Abstract:
The solar cell module includes an anti-glare film on a transparent insulating substrate. The anti-glare film is a continuous film that contains transparent inorganic fine particles in an inorganic binder, and is free of cracks. The anti-glare film preferably has an average thickness d1 of 500 nm to 2000 nm, and a maximum surface height Ry1 of 1000 nm to 10000 nm. The inorganic binder is preferably composed mainly of silicon oxide containing Si—O bonds obtained by the hydrolysis of Si—H bonds and Si—N bonds. The inorganic fine particles are non-spherical particles having ground surfaces, and preferably have an average primary particle size, calculated from cross-sectional observations of the anti-glare film, of 0.1 μm to 5.0 μm.
Abstract:
According to a graphite production method for producing graphite of higher quality, a maximum temperature inside a heating furnace of not less than 2900° C. causes an electrical discharge between a heater and a graphite container, and thus leads to a failure to efficiently convert electrical power into heat of the electrical heater. A graphite production method for producing graphite of higher quality is provided. Graphite having a higher heat diffusivity is obtained by carrying out a graphitization step such that a distance between a graphite container and the heater falls within a particular range of length, an atmosphere of a gas inside the heating furnace is set to contain a helium gas, and heating is carried out so that a maximum temperature inside the heating furnace is not less than 2900° C.
Abstract:
Provided are a heating furnace and a graphite production method both of which allow a carbonization step and a graphitization step to be consecutively performed. The heating furnace is a heating furnace for producing graphite from a polymeric material, and includes a heating furnace body for subjecting the polymeric material to heat treatment. The heating furnace body includes a closed vessel for containing the polymeric material. A gas outlet pipe is connected to the closed vessel, the gas outlet pipe being for letting, out of the heating furnace body, a pyrolytic gas generated from the polymeric material.
Abstract:
An anti-glare film includes a first inorganic layer and a second inorganic layer in this order has form a substrate side. The first inorganic layer contains transparent spherical inorganic fine particles in an inorganic binder. The inorganic binder in the first inorganic layer mainly includes a silicon oxide containing Si—O bonds obtained by hydrolysis of a Si—H bond and a Si—N bond. The second inorganic layer contains an inorganic binder. Preferably, an average thickness of the first inorganic layer is 500 to 2000 nm, an average thickness of the second inorganic layer is 50 to 1000 nm, and a ratio is 0.025 to 0.5. The second inorganic layer may furthermore contain fine particles. The anti-glare film can be used as an anti-glare film for a solar cell module.
Abstract:
The solar cell module includes an anti-glare film on a transparent insulating substrate. The anti-glare film is a continuous film that contains transparent inorganic fine particles in an inorganic binder, and is free of cracks. The anti-glare film preferably has an average thickness d1 of 500 nm to 2000 nm, and a maximum surface height Ry1 of 1000 nm to 10000 nm. The inorganic binder is preferably composed mainly of silicon oxide containing Si—O bonds obtained by the hydrolysis of Si—H bonds and Si—N bonds. The inorganic fine particles are non-spherical particles having ground surfaces, and preferably have an average primary particle size, calculated from cross-sectional observations of the anti-glare film, of 0.1 μm to 5.0 μm.