Abstract:
The present invention relates to compositions, particularly compositions useful in maintaining and supporting healthy microflora in the female urogenital tract which could lead to inhibition of vaginal infections, as well as methods of treating and preventing vaginal infections. Compositions useful in supporting healthy microflora, disclosed herein, generally comprise a therapeutic amount of a first saccharide and a therapeutic amount of a second saccharide or an organic acid. The saccharides may be, for example, a pentose, a disaccharide, a cyclodextrin, a pectic substance or a non-digestible polysaccharide. The organic acid may be, for example, malic acid.
Abstract:
The present invention relates to methods and products, such as wet wipes and absorbent articles, that are capable of imparting a health benefit when used in the intended fashion. More specifically, the products described herein comprise one or more botanical compounds, which are capable of selectively controlling the balance of flora on the skin. The compounds may enhance the adherence of healthy flora to the surface of skin or mucosa, inhibit the growth of problem flora on or around the skin surface, or inhibit the adherence of problem flora to the surface of skin or mucosa, or any combination thereof.
Abstract:
The invention relates to creped prebiotic tissue products. The tissue products comprise prebiotics in sufficiently high amounts to have a prebiotic effect in use, without negatively affecting tissue product properties, such as tensile strength, stiffness or softness. Thus, in certain embodiments the present invention provides soft, durable creped prebiotic tissue products that are able to improve the growth of healthy bacteria such as Bifidobacterium spp. or Lactobacillus spp. without promoting growth of enteropathogenic bacteria. The tissue products provide these benefits yet have a GMT greater than about 500, a Stiffness Index less than about 20 and a TS7 value less than about 10.
Abstract:
An extruded water-soluble article made is from a homogeneous material that includes a water-soluble polymer having an extrusion temperature of 50 to 150° C. The article further includes between 0.1% to 50% by weight of an active agent. Potential active agents include, isothiazolone, alkyl dimethyl ammonium chloride, a triazine, 2-thiocyanomethylthio benzothiazol, methylene bis thiocyanate, acrolein, dodecylguanidine hydrochloride, a chlorophenol, a quaternary ammonium salt, gluteraldehyde, a dithiocarbamate, 2-mercatobenzothiazole, para-chloro-meta-xylenol, silver based compounds, chlorohexidine, polyhexamthylene biguanide, a n-halamine, triclosan, a phospholipid, an alpha hydroxyl acid, 2,2-dibromo-3-nitrilopropionamide, 2-bromo-2-nitro-1,3-propanediol, farnesol, iodine, bromine, hydrogen peroxide, chlorine dioxide, ozone, a botanical oil, a botanical extract, benzalkonium chloride, chlorine, sodium hypochlorite, and combinations thereof. The article may be in the form of a film, and in one potential use, be disposed in an absorbent article. The absorbent member may be in the form of a bandage, a medical drape, a wipe, a towel, a sheet, a pad, a pant or a diaper.
Abstract:
Farnesol analogs, along with their related products (e.g., treatment compositions, wipes, absorbent articles, etc.) and their methods of formation, are provided. The farnesol analog includes a hydrophilic end group (e.g., a hydroxyl end group or a carboxylic acid end group) attached to farnesol via a covalent linkage (e.g., an ester group or an ether group).
Abstract:
Farnesol analogs, along with their related products (e.g., treatment compositions, wipes, absorbent articles, etc.) and their methods of formation, are provided. The farnesol analog includes a hydrophilic end group (e.g., a hydroxyl end group or a carboxylic acid end group) attached to farnesol via a covalent linkage (e.g., an ester group or an ether group).
Abstract:
An absorbent article comprises a bodyside liner, an outer cover, an absorbent body located between the bodyside liner and the outer cover, and an enclosure. The enclosure comprises a cover and backing joined together to form a pocket with an object disposed therein. The enclosure is joined with the absorbent article and is adapted to transition from a closed condition to an open condition such that the object disposed within the enclosure may be accessed.
Abstract:
A fibrous web that includes a cationic polymer that contains a cationic monomer comprising a cationic functional group having an affinity for the negatively charged cell walls of bacteria and a hydrophobic monomer comprising a hydrophobic functional group is provided. The molar ratio of the cationic monomer to the hydrophobic monomer is greater than about 1:1. The affinity of the cationic polymer for the bacteria allows the web to capture bacteria, thereby removing them from a surface or liquid, without the use of harsh chemicals, and also inhibiting their spread to other surfaces and liquids that may contact the web.
Abstract:
Methods for adjusting the solubility of a botanical oil in water, along with the resulting modified botanical oil and related products (e.g., treatment compositions, wipes, absorbent articles, etc.) are provided. In one embodiment, the method includes reacting the botanical oil to form a reactive product (e.g., having a hydroxyl group); and attaching a hydrophilic end group (e.g., a carboxylic acid, a carboxylic acid salt, a sugar, etc.) on the reactive product to form a modified botanical oil. The modified botanical oil generally, in most embodiments, has a greater solubility in water than the botanical oil (e.g., a solubility in water of about 10 grams per 100 grams of water or greater, such as completely soluble in water). The botanical oil includes, in one particular embodiment, an essential oil, such as those essential oil that include at least one terpene compound.
Abstract:
A cleaning article includes a cleaning article sheet comprising a fabric substrate, wherein the fabric substrate includes pores therein, and wherein the fabric substrate has a background moisture percentage by weight, and liquid water disposed substantially and disconnectedly within the pores, wherein the liquid water is at moisture percentage by weight that is 5 to 150 percentage points higher than the background moisture percentage. The nonwoven substrate can include pores formed between and/or within the fibers and can have a background moisture percentage by weight. The substrate can include a treatment to increase the dielectric constant from the dielectric constant of the substrate without the treatment. The moisture of the article can be configured to exhibit a dielectric constant of at least 50% and up to 600% higher than the dielectric constant of the same article with only background moisture.