Abstract:
A nonwoven substrate includes individual fibers each having a fiber surface and a fiber diameter, wherein a portion of the individual fibers include a micro-embossed pattern, and wherein the micro-embossed pattern includes pattern elements equal to or smaller than the fiber diameter. The pattern elements can be recessed into and/or extend out of the fiber surface, and the nonwoven substrate can include polypropylene or polyethylene. A disposable absorbent article includes a nonwoven substrate having individual fibers each having a fiber surface and a fiber diameter, wherein a portion of the individual fibers include a micro-embossed pattern, and wherein the micro-embossed pattern includes pattern elements equal to or smaller than the fiber diameter.
Abstract:
A method for making a permanently wettable material is disclosed. The method includes selecting a plurality of non-polar polymer fibers (12) wherein each fiber has a surface (16), depositing a hydrophilic polymer mixture (14) on the non-polar polymer fiber surface to form a shell. The hydrophilic polymer mixture (14) includes a cross-linkable and graftable epoxy-containing polymer, such as, poly(glycidyl methacrylate-co-ethylene glycol methacrylate) copolymer (PGMA-co-POEGMA), a high weight average molecular weight polyethylene glycol (PEG), and a surfactant. A permanently wettable material is also disclosed that includes a non-polar polymer-based web (10) having fibers (12) with a surface (16). A hydrophilic polymer mixture (14) forms a shell on the non-polar polymer fiber surface (16). The hydrophilic polymer mixture (14) includes a poly(glycidyl methacrylate-co-ethylene glycol methacrylate) copolymer (PGMA-co-POEGMA), a high weight average molecular weight polyethylene glycol (PEG), and a surfactant.
Abstract:
A method is presented for forming a collapsed foam film-like structure, the method including positioning a composition applicator adjacent to a hot non-permeable dryer surface, producing a first frothed dispersion or frothed solution from a first dispersion or solution, applying the first frothed dispersion or frothed solution to the dryer surface, allowing the first frothed dispersion or frothed solution to convert to a collapsed foam film-like structure, and scraping the collapsed foam film-like structure from the dryer surface. The method can further include producing a second dispersion or solution, blending the first dispersion or solution and the second dispersion or solution, frothing the blended dispersion or solution, applying the blended frothed dispersion or frothed solution to the dryer surface, and allowing the frothed dispersion or frothed solution to convert to a collapsed foam film-like structure.
Abstract:
The present invention provides a nonwoven substrate comprising a fibrous web defining a surface; and a layer of a benefit agent wherein said benefit agent is selected from an additive composition, an enhancement component and combinations thereof; wherein said benefit agent is frothed and bonded to the fibrous web surface through a creping process and wherein said nonwoven substrate demonstrates improvements selected from enhanced tactile feel, enhanced printing, a decrease in hysteresis, an increase in bulk, an increase in elasticity/extensibility, an increase in retractability, a reduction in rugosities and combinations thereof when compared to an untreated substrate.
Abstract:
A nonwoven substrate includes individual fibers each having a fiber surface and a fiber diameter, wherein a portion of the individual fibers include a micro-embossed pattern, and wherein the micro-embossed pattern includes pattern elements equal to or smaller than the fiber diameter. The pattern elements can be recessed into and/or extend out of the fiber surface, and the nonwoven substrate can include polypropylene or polyethylene. A disposable absorbent article includes a nonwoven substrate having individual fibers each having a fiber surface and a fiber diameter, wherein a portion of the individual fibers include a micro-embossed pattern, and wherein the micro-embossed pattern includes pattern elements equal to or smaller than the fiber diameter.
Abstract:
A method is presented for forming a collapsed foam film-like structure, the method including positioning a composition applicator adjacent to a hot non-permeable dryer surface, producing a first frothed dispersion or frothed solution from a first dispersion or solution, applying the first frothed dispersion or frothed solution to the dryer surface, allowing the first frothed dispersion or frothed solution to convert to a collapsed foam film-like structure, and scraping the collapsed foam film-like structure from the dryer surface. The method can further include producing a second dispersion or solution, blending the first dispersion or solution and the second dispersion or solution, frothing the blended dispersion or solution, applying the blended frothed dispersion or frothed solution to the dryer surface, and allowing the frothed dispersion or frothed solution to convert to a collapsed foam film-like structure.