Abstract:
A control system includes: a control valve control unit that controls a control valve; a data acquisition unit that acquires data on an operation command value and a cylinder speed in a state where an operation command for operating a hydraulic cylinder is output; and a deriving unit that derives operation characteristics in an operation direction of each of a plurality of hydraulic cylinders in relation to the operation command value based on the data acquired by the data acquisition unit. In acquisition of the data by the data acquisition unit, the control valve control unit controls a control valve of one pilot oil passage that is an acquisition object where the data is acquired among the plurality of pilot oil passages to open one pilot oil passage and controls control valves of the other pilot oil passages to close the other pilot oil passages.
Abstract:
An excavation control system includes a global coordinate computing device, a prediction correcting part, a cutting edge position data generating part, and a designed terrain data generating part. The global coordinate computing device generates revolving unit orientation data (Q) that indicates an orientation of a revolving unit. The prediction correcting part generates corrected revolving unit orientation data (R) by predictively correcting the revolving unit orientation data (Q) based on a delay time (t) and revolve angle speed data (Dω) that indicates a revolve angle speed (ω) of the revolving unit. The cutting edge position data generating part generates cutting edge position data (S) that indicates a position of a cutting edge based on reference position data (P1), the revolving unit orientation data (Q), and the corrected revolving unit orientation data (R). The designed terrain data generating part generates designed terrain data (U) based on the cutting edge position data (S) and stereoscopic designed terrain data (T).
Abstract:
An unmanned vehicle control system includes: a specified command value calculation unit that calculates a specified command value for start of an unmanned vehicle; a corrected command value calculation unit that, when request data requesting a limitation of a travel speed of the unmanned vehicle is acquired, corrects the specified command value based on the request data to calculate a corrected command value; and a travel control unit that, when the request data is acquired, controls the start of the unmanned vehicle based on the corrected command value.
Abstract:
A control system includes: a data acquisition unit that acquires an operation command value and data on a cylinder speed in a state where an operation command of operating a hydraulic cylinder is output; a deriving unit that derives an operation start operation command value when the hydraulic cylinder in a stopped state starts operating and slow-speed operation characteristics indicating a relation between the operation command value and the cylinder speed in a slow-speed area based on the data acquired by the data acquisition unit; a storage unit that stores the operation start operation command value and the slow-speed operation characteristics derived by the deriving unit; and a work machine control unit that controls a work machine based on information stored in the storage unit.
Abstract:
A control device for an unmanned vehicle includes a temperature data acquisition unit acquiring temperature data of hydraulic oil supplied to a first hydraulic actuator actuating a steering device of the unmanned vehicle, and a command output unit outputting a change command for changing a travel parameter of the unmanned vehicle based on the temperature data.
Abstract:
A construction machine control system for a construction machine that includes a work machine including a boom, an arm, and a bucket includes: an adjusting device having a movable spool and being capable of adjusting an amount of operating oil supplied to a hydraulic cylinder that drives the work machine with movement of the spool; an operation command unit adjusting the spool; a storage unit storing a plurality of pieces of correlation data indicating a relation between a cylinder speed of the hydraulic cylinder and an operation command value of operating the hydraulic cylinder according to a type of the bucket; an acquiring unit acquiring type data indicating the type of the bucket; and a control unit selecting one piece of correlation data from the plurality of pieces of correlation data based on the type data and controlling the operation command value based on the selected correlation data.
Abstract:
An excavation control system includes a global coordinate computing device, a prediction correcting part, a cutting edge position data generating part, and a designed terrain data generating part. The global coordinate computing device generates revolving unit orientation data (Q) that indicates an orientation of a revolving unit. The prediction correcting part generates corrected revolving unit orientation data (R) by predictively correcting the revolving unit orientation data (Q) based on a delay time (t) and revolve angle speed data (Dω) that indicates a revolve angle speed (ω) of the revolving unit. The cutting edge position data generating part generates cutting edge position data (S) that indicates a position of a cutting edge based on reference position data (P1), the revolving unit orientation data (Q), and the corrected revolving unit orientation data (R). The designed terrain data generating part generates designed terrain data (U) based on the cutting edge position data (S) and stereoscopic designed terrain data (T).
Abstract:
A posture computing apparatus for a work machine includes a detection apparatus that is provided to the work machine and detects angular velocity and acceleration; a first posture angle computing unit that is provided to the detection apparatus and obtains a posture angle of the work machine from the angular velocity and the acceleration detected by the detection apparatus; a low-pass filter that allows the posture angle obtained by the first posture angle computing unit to pass therethrough to output the posture angle as a first posture angle; a second posture angle computing unit that outputs, as a second posture angle, a posture angle obtained from the angular velocity and the acceleration detected by the detection apparatus; and a selecting unit that outputs the first posture angle and the second posture angle in a switching manner, based on information about a change in an angle of the work machine.
Abstract:
A construction machine control system for a construction machine that includes a work machine including a boom, an arm, and a bucket includes: an adjusting device having a movable spool and being capable of adjusting an amount of operating oil supplied to a hydraulic cylinder that drives the work machine with movement of the spool; an operation command unit adjusting the spool; a storage unit storing a plurality of pieces of correlation data indicating a relation between a cylinder speed of the hydraulic cylinder and an operation command value of operating the hydraulic cylinder according to a type of the bucket; an acquiring unit acquiring type data indicating the type of the bucket; and a control unit selecting one piece of correlation data from the plurality of pieces of correlation data based on the type data and controlling the operation command value based on the selected correlation data.
Abstract:
A control system includes: a data acquisition unit that acquires an operation command value and data on a cylinder speed in a state where an operation command of operating a hydraulic cylinder is output; a deriving unit that derives an operation start operation command value when the hydraulic cylinder in a stopped state starts operating and slow-speed operation characteristics indicating a relation between the operation command value and the cylinder speed in a slow-speed area based on the data acquired by the data acquisition unit; a storage unit that stores the operation start operation command value and the slow-speed operation characteristics derived by the deriving unit; and a work machine control unit that controls a work machine based on information stored in the storage unit.