Abstract:
The present invention relates to a method for optically determining the concentration of a gas, using at least two luminescent dyes, the first being in-sensitive to the concentration of a gas with respect to the luminescence response (reference dye) and the second being sensitive to the concentration of a gas with respect to the luminescence response (indicator dye), wherein said dyes show different luminescence decay times so that the resultant phase angle is indicative for the concentration of a gas, characterized in that the detected luminescent amplitude of the reference dye at a first moment in time is utilized to correct for sensitivity changes after said moment. The present invention also relates to a corresponding method for quality assessment of the measurement of an optical sensor for determining the concentration of a gas.
Abstract:
The present invention relates to a chemo-optical sensor unit for transcutaneous measurement of a concentration of a gas, comprising: at least one sensing layer adapted to be irradiated with a predetermined radiation; and at least one gas-permeable layer adjacent to one side of the at least one sensing layer, adapted to pass gas whose concentration is to be measured through the gas-permeable layer towards the sensing layer; wherein said chemo-optical sensor unit is adapted to operate with a contact medium between the gas-permeable layer and the skin, wherein said contact medium comprises a first compound other than water; wherein said chemo-optical sensor unit is characterized in that said at least one gas-permeable layer and said at least one sensing layer are permeable to said first compound; and wherein the chemo-optical sensor unit is adapted to measure an optical response of the at least one sensing layer, whose optical response depends on the concentration of the gas. The present invention also relates to a system comprising such a chemo-optical sensor, as well as to a method for conditioning a chemo-optical sensor unit for measuring a concentration of a gas and a thereby obtainable conditioned sensor.
Abstract:
There is provided a blood pressure monitor for use in measuring the blood pressure of a subject, the blood pressure monitor comprising a cuff that is configured to be placed around a body part of the subject and inflated to apply pressure to the body part; a pressure sensor that is configured to provide measurements of the pressure in the cuff; a plethysmography sensor comprising a coil having one or more windings that is configured to provide an output signal indicating the volume of the body part of the subject and/or changes in the volume of the body part; and a processing unit that is configured to determine the blood pressure of the subject from the measurements of the pressure in the cuff and the measurements of the volume of the body part and/or the changes in the volume of the body part. A corresponding method claim is also provided.
Abstract:
The present invention provides an optical sensor unit (10) for measuring gas concentration, comprising: sensor means (12, 13) and first thermal insulation means (14, 16) at least partially surrounding said sensor means (12, 13). The sensor means (12,13) includes at least one sensing layer (12) adapted to be irradiated with a predetermined radiation (100), and at least one gas-permeable layer (13) adjacent to one side of the at least one sensing layer (12) and adapted to pass gas, which concentration is to measured, through the gas-permeable layer (13) towards the at least one sensing layer (12). The optical sensor unit (10) is adapted to measure an optical response of the at least one sensing layer (12), which optical response depends on the gas concentration.
Abstract:
The present invention relates to a device (700a, 700b, 700c) for wireless transmission of data and/or power between the device and another device of a system, in particular of a patient monitoring system. To meet stringent relative time errors at low complexity the device comprises a connector (701) comprising a data transmission unit (703) and a magnetic coupling unit (702, 704) for transmitting power to and/or receiving power. A detection unit (705) detects coupling of a counterpart connector of another device of the system with the connector (701). A control unit (707) uses the detection that a counterpart connector of another device of the system has been coupled with the connector (701) as a trigger to determine and/or reset a relative time difference between a clock signal used by the device and a clock signal of the other device using i) the high frequency power signal of the magnetic coupling unit (702, 704) and of a magnetic coupling unit of the counterpart connector and/or ii) a received time calibration signal for determining and/or resetting the relative time difference.
Abstract:
Apparatus and method comprising an ultrasound transmitter, for placement at a first location on the body of a subject, to emit an ultrasound pulse; an ultrasound receiver, for placement at a second location on the body, to detect an emitted ultrasound pulse; and a controller in communication with the transmitter and receiver. The controller causes an ultrasound pulse to be emitted by the transmitter; receives a measurement signal from the receiver; determines, based on the received measurement signal, a time of arrival at the receiver, T1 s of a first part of the emitted ultrasound pulse; determines, based on the received measurement signal, a time of arrival at the receiver, T2, of a second part of the ultrasound pulse; and calculates, using T1 and T2, a flow velocity of blood in a blood vessel between the first location and the second location.
Abstract:
The present invention relates to an ECG cable for connection with an ECG monitor. To achieve a miniaturization of the ECG cable and omitting the conventionally used trunk cable and trunk cable connector, the ECG cable comprises a core (2), a resistive wire cable (3a-3h) comprising a plurality of resistive wires (31-37) wound around the core and isolated with respect to each other, and two or more flexible lead wires (4), each connected to a respective resistive wire at its one end (40) and to an electrode (5) at its other end (41).
Abstract:
The present invention relates to an adapter (100) for coupling with a medical coupling unit (1) and a medical sensor (2) that are configured for being coupled for electrical signal transmission between them. The adapter comprises an adapter coupling unit (101) configured to fit with a coupling-side connector (10) of the medical coupling unit (1) and including a plurality of coupling-side electrical contacts (111, 113) for contacting a plurality of electrical contacts (11, 13) of the coupling-side connector (10) and a sensor-side connector (120) configured to fit with a sensor-side connector (20) of the medical sensor (2) and including a plurality of sensor-side electrical contacts (121, 123) for contacting a plurality of electrical contacts (21, 23) of the sensor-side connector (20), allowing the adapter coupling unit (101) to be mechanically coupled between the medical coupling unit (1) and the medical sensor (2). Further, the adapter comprises one or more wires (102) fixedly connected to the adapter coupling unit for coupling one or more sensor elements (225) with the adapter coupling unit for electrical signal transmission from the one or more sensor elements to the adapter coupling unit, and connection circuitry (103) within the adapter coupling unit (101) for connecting said sensor-side electrical contacts (121, 123) and said one or more wires (102) with said coupling-side electrical contacts (111, 113) allowing signal transmission from the medical sensor (2) and one or more sensor elements (225) coupled to the adapter coupling unit (101) to the medical coupling unit (1).
Abstract:
The present invention relates to a chemo-optical sensor unit for transcutaneous measurement of a concentration of a gas, comprising: at least one sensing layer adapted to be irradiated with a predetermined radiation; and at least one gas-permeable layer adjacent to one side of the at least one sensing layer, adapted to pass gas whose concentration is to be measured through the gas-permeable layer towards the sensing layer; wherein said chemo-optical sensor unit is adapted to operate with a contact medium between the gas-permeable layer and the skin, wherein said contact medium comprises a barrier layer which is gas- permeable and impermeable to water and ions; and wherein the chemo-optical sensor unit is adapted to measure an optical response of the at least one sensing layer, whose optical response depends on the concentration of the gas. The present invention also relates to a system comprising such a chemo-optical sensor, as well as to a method for conditioning a chemo-optical sensor unit for measuring a concentration of a gas and a thereby obtainable conditioned sensor.