Abstract:
Disclosed herein is stack-type flow energy storage system. More particularly, the system includes a stack-type electrode cell composed of fluidic electrode material mixed with an electrolyte and storage tank for the electrode material, thereby remarkably improving stability, output and energy density. The stack-type flow energy storage system is advantageous in that unit cells, each consisting of a cathode, a separation membrane and an anode, are connected in parallel or in series to each other to make a stack cell, thus remarkably increasing output power. Further, the stack-type flow energy storage system is advantageous in that the sizes of slurry storage tanks connected to an electrode cell are adjusted, thus determining the required specification of energy density.
Abstract:
Disclosed is a 3-D printing apparatus. The apparatus includes an ink output module including an ink supply unit having an ink for forming an electrode portion, electrolyte or packaging portion received therein and an ink discharge unit coupled to the ink supply unit; a driving unit having the ink output module mounted thereon to move the ink output module in an X, Y, Z axis direction with respect to a substrate where a supercapacitor or secondary battery will be formed; a dispenser connected to the ink supply unit to supply gas having controlled pressure to the ink supply unit through a gas supply tube and to supply the ink within the ink supply unit through the ink discharge unit; and a controller controlling the output of the ink by transmitting a control command for fabricating the supercapacitor or the secondary battery to the dispenser and the driving unit.
Abstract:
Disclosed herein is stack-type flow energy storage system. More particularly, the system includes a stack-type electrode cell composed of fluidic electrode material mixed with an electrolyte and storage tank for the electrode material, thereby remarkably improving stability, output and energy density. The stack-type flow energy storage system is advantageous in that unit cells, each consisting of a cathode, a separation membrane and an anode, are connected in parallel or in series to each other to make a stack cell, thus remarkably increasing output power. Further, the stack-type flow energy storage system is advantageous in that the sizes of slurry storage tanks connected to an electrode cell are adjusted, thus determining the required specification of energy density.
Abstract:
The present disclosure relates to a solid-state polymer electrolyte with improved processability and a method for manufacturing the same, and more particularly to a solid electrolyte containing a polymer obtained by pertaining polymerization of a zwitterionic monomer in a solvent-free ionic liquid.
Abstract:
Disclosed herein is a high-capacity slurry electrode for use in a flow energy storage system, comprising: an electrolyte; electrode active particles, distributed in the electrolyte, functioning as an electrode active material in an electrochemical flow capacitor storage system; and a redox active material, dissolved in the electrolyte, behaving as a pseudo-capacitor through a redox reaction on a surface of the electrode active material, wherein the high-capacity slurry electrode exhibits both capacitor properties based on the electrode active particles and pseudo-capacitor properties based on the redox active material.
Abstract:
The present invention may provide a nano-sized composite having excellent electrical conductivity and specific surface area. The present invention may provide a method of producing the above-described composite through a simple process without an ultracentrifugation process or a flash annealing step. The present invention may provide an energy storage device having high power performance and having excellent specific capacity characteristics not only at low current density but also at high current density.
Abstract:
Disclosed herein is an electrochemical device forming a chip-capacitor or a super-capacitor. The electrochemical device includes: a ceramic substrate having a nonconductive ceramic layer, a current collecting layer disposed on a nonconductive ceramic layer and made of ceramic or cermet, and a metal layer arranged on outer surfaces of the nonconductive ceramic layer and the current collecting layer; an electrode having a positive electrode and a negative electrode and formed on the current collecting layer; and a nonconductive ceramic packaging module located on the ceramic substrate to accommodate electrolyte therein, wherein the metal layer is exposed to the outside of the nonconductive ceramic packaging module.
Abstract:
Disclosed is a flow-type energy storage device having an improved flow of fluid. The flow-type energy storage device stores electricity using a fluidic material, and includes a reaction region in which charge-discharge reaction of electricity is performed by the fluidic material, wherein the reaction region has an octagonal cross-section. The shape of the reaction region is controlled to thus improve the flowability of the fluidic material, thereby providing a flow-type energy storage device that has almost constant electrical properties even when a charging and discharging cycle is repeatedly performed. Further, the structures of an inlet and an outlet are not complicated and a separate part for controlling the flow of fluid is not used in the device, and accordingly, additional costs are not incurred during a process of manufacturing the flow-type energy storage device.
Abstract:
The present invention relates to a metal-organic framework and an energy storage system having the same, and more specifically, to an energy storage system that is capable of providing excellent electrical conductivity and electrochemical capacity properties, especially excellent electrochemical performance at low temperatures, by means of a novel one-dimensional metal-organic framework having thianthrene-based organic ligands.
Abstract:
Disclosed herein is a method of manufacturing a micro-supercapacitor with an increased storage capacity of electrical energy. The method is a method of manufacturing a high-capacity micro-supercapacitor including an anode and a cathode separated from each other, which includes forming a pair of current collectors by discharging conductive ink on a substrate surface with a 3D printer, and forming an electrode consisting of an anode and a cathode by stacking an electrode constituting material in the form of a plurality of layers on each of the pair of current collectors using the 3D printer.