Abstract:
According to an aspect of the present invention, there is provided a method of manufacturing a compound thin film, which includes configuring an electrodeposition circuit by connecting an electrolytic solution, which is manufactured by mixing a predetermined precursor with a solvent, and an electrochemical cell, which includes a working electrode in a form of an electrode at which a specific pattern is patterned on a predetermined substrate, to a voltage application device or a current application device, and applying a reduction voltage or current to the working electrode using the voltage application device or the current application device, and selectively electrodepositing a thin film in some region of the electrode along a shape of the electrode at which the specific pattern is patterned.
Abstract:
The present disclosure relates to a novel polymer compound and a method for preparing the same. More particularly, the present disclosure relates to a novel conductive low band gap electron donor polymer compound having high photon absorptivity and improved hole mobility, a method for preparing the same and an organic photovoltaic cell containing the same. Since the conductive polymer compound as a low band gap electron donor exhibits high photon absorptivity and superior hole mobility, it can be usefully used as a material for an organic optoelectronic device such as an organic photodiode (OPD), an organic thin-film transistor (OTFT), an organic light-emitting diode (OLED), an organic photovoltaic cell, etc. as well as in the development of a n-type material.
Abstract:
The present disclosure provides an organic semiconductor compound, which has superior charge mobility, low band gap, wide light absorption area and adequate molecular energy level. The conductive organic semiconductor compound of the present disclosure can be used as a material for various organic optoelectric devices such as an organic photodiode (OPD), an organic light-emitting diode (OLED), an organic thin-film transistor (OTFT), an organic solar cell, etc. In addition, it can be prepared into a thin film via a solution process, can be advantageously used to fabricate large-area devices and can reduce the cost of device fabrication.
Abstract:
The following description relates to a method of low temperature sintering a catalyst layer that formed on one side of a counter electrode using a laser. It is possible to prepare a counter electrode for a dye-sensitized solar cell (DSSC) based on a flexible substrate easily because the method can be applied to a conducting substrate made of plastic materials as well as a conducting glass substrate.
Abstract:
A Cu2ZnSnS4-xSex (0≦x≦4) thin film solar cell is disclosed. The thin film solar cell includes a Cu2ZnSnS4-xSex (0≦x≦4) thin film as an absorber layer produced by forming a precursor film composed of Cu, Zn, Sn, and Se using an ionic liquid as a solvent through a constant current process and annealing the precursor film with sulfur. Also disclosed is a method for fabricating the thin film solar cell. The method uses a non-vacuum electrodeposition process that is appropriate for large-area mass production and is thus cost effective compared to a vacuum process. In addition, since the method uses an ionic liquid, the formation of by-products harmful to humans as a result of side reactions is suppressed. Furthermore, the method uses a one-step electrodeposition process, which enables the deposition of a maximum of four elements at one time, or a multi-step deposition process, and an annealing process.
Abstract:
Disclosed is an electron transport layer for a flexible perovskite solar cell. The electron transport layer includes transition metal-doped titanium dioxide particles. The titanium dioxide particles are densely packed in the electron transport layer. The electron transport layer is transparent. The use of the electron transport layer enables the fabrication of a flexible perovskite solar cell with high power conversion efficiency. Also disclosed is a flexible perovskite solar cell employing the electron transport layer.
Abstract:
The present description is directed to a manufacturing method of solid-state dye-sensitized solar cells and a solid-state electrolyte filling device used in the manufacturing method. The present invention provides a manufacturing method of dye-sensitized solar cells that fills the solid-state electrolyte more uniformly with enhanced efficiency to secure higher light-to-energy conversion efficiency.
Abstract:
Disclose is a triphenylamine derivative with a low band gap. The triphenylamine derivative is represented by Formula (I): wherein R1 and Ar are as defined in the specification. Further disclosed is a high efficiency organic photovoltaic cell using the derivative.