Abstract:
Provided is a method for manufacturing a sintered body for an electrolyte and an electrolyte for a fuel cell using the same. More particularly, the following disclosure relates to a method for preparing an electrolyte having a firm thin film layer by using a sintered body having controlled sintering characteristics, and application of the electrolyte to a solid oxide fuel cell. It is possible to control the sintering characteristics of a sintered body through a simple method, such as controlling the amounts of crude particles and nanoparticles. In addition, an electrode using the obtained sintered body having controlled sintering characteristics is effective for forming a firm thin film layer. Further, such an electrolyte having a firm thin film layer formed thereon inhibits combustion of fuel with oxygen when it is applied to a fuel cell, and thus shows significantly effective for improving the quality of a cell.
Abstract:
A metal-ceramic composite for a fuel cell anode is disclosed. In the metal-ceramic composite, the content of the metal is greatly reduced and the intervals between the metal particles are maintained constant, achieving improved activity and conductivity. The metal-ceramic composite includes a metal catalyst raw material and a mixed-conductive ceramic. The metal catalyst raw material is present in an amount such that the content of the metal catalyst nanoparticles in the metal-ceramic composite is significantly lower than in conventional metal-ceramic composites. The presence of a small amount of the metal catalyst nanoparticles in the metal-ceramic composite minimizes the occurrence of stress resulting from a change in the volume of the metal catalyst and provides a solution to the problem of defects, achieving improved life characteristics. Also disclosed is a method for preparing the metal-ceramic composite.
Abstract:
Provided are a solid oxide cell (SOC) system producing a synthetic gas by using a waste gas discharged from a power plant, or the like, and a method for controlling the same. The SOC system includes i) a first power plant configured to provide a waste gas and first electrical energy, ii) a second power plant configured to provide second electrical energy using an energy source different from that of the first power plant, and iii) a solid oxide cell (SOC) connected to the first power plant and the second power plant, configured to receive the waste gas and the second electrical energy to manufacture carbon monoxide and hydrogen, and providing the carbon monoxide and the hydrogen to the first power plant.
Abstract:
Provided is a solid oxide cell including a fuel electrode layer, electrolyte layer and an air electrode layer, wherein a diffusion barrier layer is provided between the air electrode layer and the electrolyte layer, the diffusion barrier layer includes: a first diffusion barrier layer formed on the electrolyte layer and including a sintered ceria-based metal oxide containing no sintering aid; and a second diffusion barrier layer formed on the first diffusion barrier layer and including a sintered product of a ceria-based metal oxide mixed with a sintering aid, the first diffusion barrier layer includes a sintered product of nanopowder and macropowder of a ceria-based metal oxide, and the first diffusion barrier layer and the second diffusion barrier layer are sintered at the same time. The diffusion barrier layer is densified, shows high interfacial binding force and prevents formation of a secondary phase derived from chemical reaction with the electrolyte.
Abstract:
A hybrid electrochemical cell using reversible operation of a solid oxide cell includes: i) solid oxide cell generating power; ii) first storage container storing hydrogen and carbon monoxide discharged from the solid oxide cell supplying the hydrogen and carbon monoxide to the solid oxide cell; iii) second storage container storing steam and carbon dioxide discharged from the solid oxide cell supplying the steam and carbon dioxide to the solid oxide cell; iv) first connection pipe connecting the first storage container, the second storage container, and the solid oxide cell; v) second connection pipe connecting the first storage container, the second storage container, and the solid oxide cell; vi) discharging terminal connected to the solid oxide cell; vii) charging terminal connected to the solid oxide cell spaced apart from the discharging terminal, having the solid oxide cell disposed in between; and viii) mode converter connected to the solid oxide cell.