摘要:
A modulated saturable absorber controlled laser. The laser includes an active medium; a saturable absorber material operationally coupled to the medium to serve as a passive Q switch; and an energy source disposed external to the medium for apply energy to the absorber. In particular embodiments, the energy source is a diode laser and focusing optics are included between the diode laser and the absorber. Modulation of the gain at the photon round trip time in the laser resonator causes a mode-locked laser output. A dichroic beamsplitter is included in this embodiment for directing energy to the absorber. In an alternative embodiment, the diode laser is a quasi-monolithic diode laser assembly ring.
摘要:
A solid-state eye-safe laser and method with gain boost by dual-wavelength, synchronized pumplights. The laser includes a medium doped with ions that emit light at a laser wavelength as a result of the transition of electron energy from an upper energy level manifold to a lower energy level manifold. A first pumplight couples energy into the medium at a first wavelength that excites a first portion of the ions into said upper energy level manifold. A second pumplight couples energy into said medium at a second wavelength that excites a second portion of the ions to a third energy level manifold. A fraction of the ions relax to the upper energy level manifold and thereby increase the gain of the laser (2). The laser may be an erbium crystal laser, using yttrium-aluminum-garnet operating near 1640 nanometers. A second ion, such as ytterbium, may be diffused into the lasing medium, and an inter-ionic energy transfer employed to coupled the second pumplight energy to the upper level energy manifold of he laser transition.
摘要:
A modulated saturable absorber controlled laser. The laser includes an active medium; a saturable absorber material operationally coupled to the medium to serve as a passive Q switch; and an energy source disposed external to the medium for apply energy to the absorber. In particular embodiments, the energy source is a diode laser and focusing optics are included between the diode laser and the absorber. Modulation of the gain at the photon round trip time in the laser resonator causes a mode-locked laser output. A dichroic beamsplitter is included in this embodiment for directing energy to the absorber. In an alternative embodiment, the diode laser is a quasi-monolithic diode laser assembly ring.
摘要:
An inherently efficient direct eye-safe laser based on Er:Crystal technology utilizing intra-cavity energy conversion. The Er:Crystal laser is intra-cavity pumped by a highly efficient ytterbium or neodymium crystal laser, which is in-turn, pumped by conventional infrared diodes array bars. The laser is inherently compact and low-cost allowing for significant scaling of the output energy and power with greatly reduced number of required diode pump sources. This intra-cavity pump scheme of appropriate Er:Crystals also provides for efficient generation of ultra-short Q-switched pulse operation of such lasers.
摘要:
A solid-state eye-safe laser and method with gain boost by dual-wavelength, synchronized pumplights. The laser includes a medium doped with ions that emit light at a laser wavelength as a result of the transition of electron energy from an upper energy level manifold to a lower energy level manifold. A first pumplight couples energy into the medium at a first wavelength that excites a first portion of the ions into said upper energy level manifold. A second pumplight couples energy into said medium at a second wavelength that excites a second portion of the ions to a third energy level manifold. A fraction of the ions relax to the upper energy level manifold and thereby increase the gain of the laser (2). The laser may be an erbium crystal laser, using yttrium-aluminum-garnet operating near 1640 nanometers. A second ion, such as ytterbium, may be diffused into the lasing medium, and an inter-ionic energy transfer employed to coupled the second pumplight energy to the upper level energy manifold of he laser transition.
摘要:
A laser system includes a laser resonator cavity having a resonant path and an Er,Yb:glass lasing element with an output of from about 1.5 to about 1.6 micrometers within the laser resonator cavity. A diode array optically pumps the lasing element to emit light. A Q-switch lies along the resonant path within the laser resonator cavity. The Q-switch is formed of a host material having a concentration of uranium ions therein, so as to be a saturable absorber of the light emitted by the lasing element. The Q-switch is preferably a uranium-doped fluoride such as U:CaF.sub.2, U:SrF.sub.2, or U:BaF.sub.2.
摘要:
An eyesafe laser system includes a Q-switch crystal formed of a semiconductor host material having noncentrosymmetric tetrahedral substitutional sites doped with transition metal ions in concentrations from about 0.001 to about 0.10 atomic percent, which functions as to be a saturable absorber of light at eyesafe wavelengths with a relatively long relaxation lifetime. Co.sup.2+ :ZnSe has been demonstrated to have advantageously high absorption cross section and advantageously high relaxation lifetime at both 1.54 .mu.m (Er:glass laser) and 1.6 .mu.m (Er:YAG laser). Other candidate host materials include other zinc chalcogenides, cadmium chalcogenides and zinc oxide. The resultant Q-switch does not require additional focusing optics inside the cavity and has a saturation fluence which is approximately one order of magnitude less than other state of the art saturable absorbers in the "eyesafe" wavelength region, thereby permitting substantially faster Q-switch bleaching, lower thermal loads, and less potential for damage than was hitherto possible.
摘要:
A total internal reflection modulator/deflector assembly for use with a focused beam of polarized incident laser light. The application of a low direct current voltage (e.g., less than 50 volts) to a pair of identical stacked crystals exhibiting the Pockel's effect produces an index of refraction difference at their interface. Since the index changes are small, the incidence angle of the impinging polarized laser light is large, e.g., 89 degrees. In the preferred embodiment, one crystal is rotated relative to the other, such that the applied electric field causes index changes of +.DELTA.n in one crystal and of -.DELTA.n in the other crystal. As a result, the impinging polarized laser light is divided into two portions, one of which is totally internal reflected, and transmitted in the desired modulated conditions. Two electrode members are used to apply the low direct current voltage to the interface of the crystals, with the electrodes arranged to face each other across the crystals and also positioned such that the incident light need not traverse them, the other portion is refracted.
摘要:
A laser system includes a laser resonator cavity having a resonant axis and a lasing element within the laser resonator cavity. The lasing element emits, under stimulation, light at a wavelength of from about 1.6 to about 2.3 micrometers. There is a flash lamp, laser diodes or other pumping devices, which optically pump the lasing element to emit laser light. A Q-switch crystal lies along the resonant axis within the laser resonator cavity. The Q-switch crystal is formed of a host material having a concentration of Ho.sup.3+ ions therein, so as to be a saturable absorber of light of a wavelength of about 2.0-2.1 micrometers. The Q-switch crystal is preferably Ho.sup.3+ -doped yttriumlithium-fluoride, or Ho.sup.3+ -doped yttrium-vanadate. In another embodiment, the Q-switch crystal is preferably Cr.sup.2+ :fosterite (Mg.sub.2 SiO.sub.4).
摘要:
A laser system includes a laser resonator cavity having a resonant axis and a lasing element within the laser resonator cavity. The lasing element emits, under stimulation, light at a wavelength of from about 0.95 to about 1.65 micrometers. There is a flash lamp which optically pumps the lasing element to emit light. A Q-switch crystal lies along the resonant axis within the laser resonator cavity. The Q-switch crystal is formed of a host material having a concentration of Co.sup.2+ ions therein, so as to be a saturable absorber of light of a wavelength of from about 0.95 to about 1.65 micrometers. The Q-switch crystal is preferably Co.sup.2+ -doped yttrium-scandium-gallium garnet or Co.sup.2+ -doped yttrium-aluminum garnet.