Abstract:
A semiconductor integrated circuit includes a first chip and a second chip stacked together with the first chip. A first memory area is formed on the second chip, and a second memory area for repairing a failure of the first memory area is formed on the first chip.
Abstract:
A semiconductor memory apparatus includes a row path activating unit configured to generate a line connection control signal according to a received address and active command. The semiconductor memory apparatus also includes a cell array circuit unit including an input/output line switch for connecting a first input/output line in a cell block and a second input/output line extending to the outside of the cell block. The cell array also including a bit line switch for connecting a bit line pair to each other. The input/output line switch and the bit line switch are further controlled by the line connection control signal from the row path activating unit.
Abstract:
An input buffer includes a delay compensation unit for combining (a) a first signal obtained by buffering an input signal using another signal, which is out of phase with the input signal, with (b) a second signal obtained by buffering the input signal using a reference voltage signal, to output a third signal.
Abstract:
Disclosed are a power supply circuit for an oscillator of a semiconductor memory device and a voltage pumping device using the same. In the power supply circuit, a voltage divider divides a voltage between an external power supply and ground. A driver is controlled by a signal of the voltage divided by the voltage divider. The driver supplies an internal power supply voltage. A capacitor is coupled between the driver and the ground. As the level of an external power supply voltage is increased, a relatively low voltage is supplied to the oscillator to increase a cycle length of an output pulse signal of the oscillator. Therefore, an excessive increase in the internal power supply voltage due to over-pumping can be avoided and noise occurrence and electric current consumption can be reduced.
Abstract:
A power-up signal generator uses a deep power down power-up signal, which should be in a standby state in a deep power down entry, for an initialization of other semiconductor elements in a DRAM device that operates after an internal power supply voltage is generated. The generator also uses the power-up signal, which is disabled in the deep power down entry and enabled in a deep power down exit by the internal power supply voltage. The generator may include a power-up detector for generating a power-up detection signal, a deep power down power-up signal generator for generating a deep power down power-up signal, a power-up signal generator for generating a power-up signal and a power-up controller for determining whether or not to enable the power-up signal in the deep power down entry.
Abstract:
A semiconductor apparatus includes a multi-chip module which multi-chip module comprises a first and a second chips. The semiconductor apparatus comprises a first data line in the first chip to carry first read data; a first controller, in the first chip, configured to generate first output data on a first output data line in the first chip based on the first read data transmitted from the first data line; a first data transmitter configured to electrically connect the first output data line to the second chip.
Abstract:
A semiconductor device and a layout method of the same reduce a mismatch in a semiconductor device. The semiconductor device includes a first transistor unit providing a first path of current and a second transistor unit designed in a mirror structure to the first transistor unit and providing a second path of current. The layout of the second transistor unit has a shape identical to the first transistor unit and shifted in a first direction. The layout of the semiconductor device reduces a mismatch of the transistors occurring when masks are combined, and thereby reduces their offset.
Abstract:
A semiconductor memory apparatus includes a row path activating unit configured to generate a line connection control signal according to a received address and active command. The semiconductor memory apparatus also includes a cell array circuit unit including an input/output line switch for connecting a first input/output line in a cell block and a second input/output line extending to the outside of the cell block. The cell array also including a bit line switch for connecting a bit line pair to each other. The input/output line switch and the bit line switch are further controlled by the line connection control signal from the row path activating unit.
Abstract:
Disclosed is a controller for driving current of a semiconductor device having an over-driving function, the controller comprising: a load means supplied with an internal voltage; a plurality of switching means, each of which has a first terminal connected to an external voltage and a second terminal connected to the load means, wherein at least one of the plurality of switching means is selectively turned on/off according to an voltage level of the external voltage.
Abstract:
A latch structure includes a first inverter that includes a first PMOS transistor and a first NMOS transistor, and a second inverter that includes a second PMOS transistor and a second NMOS transistor, receives an output signal of the first inverter, and outputs an input signal to the first inverter. The sources of the first and second transistors of the same type are connected to a common straight source line.