摘要:
A process for the production of metal nanoparticles. Nanoparticles are formed by combining a metal compound with a solution that comprises a polyol and a substance that is capable of being adsorbed on the nanoparticles. The nanoparticles are precipitated by adding a nanoparticle-precipitating liquid in a sufficient amount to precipitate at least a substantial portion of the nanoparticles and of a protic solvent in a sufficient amount to improve the separation of the nanoparticles from the liquid phase.
摘要:
A process for the production of metal nanoparticles. The process comprises a rapid mixing of a solution of at least about 0.1 mole of a metal compound that is capable of being reduced to a metal by a polyol with a heated solution of a polyol and a substance that is capable of being adsorbed on the nanoparticles.
摘要:
A metal nanoparticle composition for the fabrication of conductive features. The metal nanoparticle composition advantageously has a low viscosity permitting deposition of the composition by direct-write tools. The metal nanoparticle composition advantageously also has a low conversion temperature, permitting its deposition and conversion to an electrical feature on polymeric substrates.
摘要:
A metal nanoparticle composition for the fabrication of conductive features. The metal nanoparticle composition advantageously has a low viscosity permitting deposition of the composition by direct-write tools. The metal nanoparticle composition advantageously also has a low conversion temperature, permitting its deposition and conversion to an electrical feature on polymeric substrates.
摘要:
A process for the production of metal nanoparticles. The process comprises a rapid mixing of a solution of at least about 0.1 mole of a metal compound that is capable of being reduced to a metal by a polyol with a heated solution of a polyol and a substance that is capable of being adsorbed on the nanoparticles.
摘要:
Processes for the production of metal nanoparticles. In one aspect, the invention is to a process comprising the steps of mixing a heated first solution comprising a base and/or a reducing agent (e.g., a non-polyol reducing agent), a polyol, and a polymer of vinyl pyrrolidone with a second solution comprising a metal precursor that is capable of being reduced to a metal by the polyol. In another aspect, the invention is to a process that includes the steps of heating a powder of a polymer of vinyl pyrrolidone; forming a first solution comprising the powder and a polyol; and mixing the first solution with a second solution comprising a metal precursor capable of being reduced to a metal by the polyol.
摘要:
Processes for the production of metal nanoparticles. In one aspect, the invention is to a process comprising the steps of mixing a heated first solution comprising a base and/or a reducing agent (e.g., a non-polyol reducing agent), a polyol, and a polymer of vinyl pyrrolidone with a second solution comprising a metal precursor that is capable of being reduced to a metal by the polyol. In another aspect, the invention is to a process that includes the steps of heating a powder of a polymer of vinyl pyrrolidone; forming a first solution comprising the powder and a polyol; and mixing the first solution with a second solution comprising a metal precursor capable of being reduced to a metal by the polyol.
摘要:
A precursor composition for the deposition and formation of an electrical feature such as a conductive feature. The precursor composition advantageously has a low viscosity enabling deposition using direct-write tools. The precursor composition also has a low conversion temperature, enabling the deposition and conversion to an electrical feature on low temperature substrates. A particularly preferred precursor composition includes copper metal for the formation of highly conductive copper features.
摘要:
A precursor composition for the deposition and formation of an electrical feature such as a conductive feature. The precursor composition advantageously has a low viscosity enabling deposition using direct-write tools. The precursor composition also has a low conversion temperature, enabling the deposition and conversion to an electrical feature on low temperature substrates. A particularly preferred precursor composition includes silver metal for the formation of highly conductive silver features.
摘要:
Precursor compositions for the deposition of electronic features such as resistors and dielectric components and methods for the deposition of the precursor compositions. The precursor compositions have a low viscosity, such as not greater than about 1000 centipoise and can be deposited using a direct-write tool. The precursors also have a low conversion temperature, enabling the formation of electronic features on a wide variety of substrates, including low temperature substrates.