摘要:
The apparatus of the present invention is a combination of a breath interface and an external exposure dosimeter interface to a chemical analysis device, all controlled by an electronic processor for quantitatively analyzing chemical analysis data from both the breath interface and the external exposure dosimeter for determining internal tissue dose. The method of the present invention is a combination of steps of measuring an external dose, measuring breath content, then analyzing the external dose and breath content and determining internal tissue dose.
摘要:
A topical applicator composition and process are described that decorporate radionuclides from radiologically-contaminated dermal surfaces and that further promote healing. The topical applicator includes a decorporation agent mixed with a plasticizing agent that forms a covering when applied to the dermal surface that decorporates radionuclides and minimizes their systemic migration. The topical applicator formulations can be delivered in conjunction with bandages and other application dressings.
摘要:
Non-invasive methods and systems are described for rapidly measuring in-vivo dose, severity, and progression of injury after exposure to damaging phenomena, such as ionizing radiation, chemical burns, or electrical burns. Optical reflectance backscattering spectroscopy is applied to identify and characterize the effects of such phenomena on an individual's whole body and in localized areas.
摘要:
Microanalytical systems based on a microfluidics/electrochemical detection scheme are described. Individual modules, such as microfabricated piezoelectrically actuated pumps and a microelectrochemical cell were integrated onto portable platforms. This allowed rapid change-out and repair of individual components by incorporating “plug and play” concepts now standard in PC's. Different integration schemes were used for construction of the microanalytical systems based on microfluidics/electrochemical detection. In one scheme, all individual modules were integrated in the surface of the standard microfluidic platform based on a plug-and-play design. Microelectrochemical flow cell which integrated three electrodes based on a wall-jet design was fabricated on polymer substrate. The microelectrochemical flow cell was then plugged directly into the microfluidic platform. Another integration scheme was based on a multilayer lamination method utilizing stacking modules with different functionality to achieve a compact microanalytical device. Application of the microanalytical system for detection of lead in, for example, river water and saliva samples using stripping voltammetry is described.