摘要:
A laser processes a circuit board including at least two layers. The two layers are a conductive layer with a plurality of holes and an insulating layer. The conductive layer is disposed on a surface layer of the insulating layer which is to be processed by applying a laser beam to portions of the insulating layer corresponding to the holes of the conductive layer. The circuit board is irradiated with the laser beam, and a reflected laser beam is detected, whereby the laser processing of the insulating layer corresponding to an abnormal hole in the conductive layer is stopped, if the detected value of the reflected laser beam is an abnormal value differing from a desired value. Also, the insulating layer corresponding to the hole is processed when the detected value of the reflected light conforms to the desired value.
摘要:
This is to present a laser machining method and a laser machining apparatus for drilling holes, capable of achieving conduction securely between adjacent conductive layers, by detecting the machining state of a workpiece adequately, and controlling the machining. For this purpose, the number of laser pulse outputs capable of machining securely is preset. During laser machining, reflected laser beam intensity from the workpiece and incident laser beam intensity are detected, and the machining state of the workpiece is detected. As a result, when judging the workpiece has reached a desired machining state, laser machining is finished if the number of times of laser machining has not reached the set number of laser pulse outputs. If it is judged that the workpiece has not reached the desired machining state, laser machining is finished when reaching the set number of laser pulse outputs. As a result, the laser machining method and laser machining apparatus capable of drilling holes of high quality at high yield and shortening the machining cycle time can be realized.
摘要:
This is to present a laser machining method and a laser machining apparatus for drilling holes, capable of achieving conduction securely between adjacent conductive layers, by detecting the machining state of a workpiece adequately, and controlling the machining. For this purpose, the number of laser pulse outputs capable of machining securely is preset. During laser machining, reflected laser beam intensity from the workpiece and incident laser beam intensity are detected, and the machining state of the workpiece is detected. As a result, when judging the workpiece has reached a desired machining state, laser machining is finished if the number of times of laser machining has not reached the set number of laser pulse outputs. If it is judged that the workpiece has not reached the desired machining state, laser machining is finished when reaching the set number of laser pulse outputs. As a result, the laser machining method and laser machining apparatus capable of drilling holes of high quality at high yield and shortening the machining cycle time can be realized.
摘要:
This is to present a laser machining method and a laser machining apparatus for drilling holes, capable of achieving conduction securely between adjacent conductive layers, by detecting the machining state of a workpiece adequately, and controlling the machining. For this purpose, the number of laser pulse outputs capable of machining securely is preset. During laser machining, reflected laser beam intensity from the workpiece and incident laser beam intensity are detected, and the machining state of the workpiece is detected. As a result, when judging the workpiece has reached a desired machining state, laser machining is finished if the number of times of laser machining has not reached the set number of laser pulse outputs. If it is judged that the workpiece has not reached the desired machining state, laser machining is finished when reaching the set number of laser pulse outputs. As a result, the laser machining method and laser machining apparatus capable of drilling holes of high quality at high yield and shortening the machining cycle time can be realized.
摘要:
A laser controlling method can generate laser of stable laser pulses, and eliminate useless time from a machining procedure. The method uses a gain medium and a Q-switch, and emits exciting light to the gain medium, thereby setting the Q-switch in a continuous oscillation mode, and prepares a given Q-switch pause time before a laser pulse is generated. When the continuous oscillation is kept going longer than a given time, the control method sets a Q-switch pause time for obtaining a first laser pulse to be different from a Q-switch pause time for obtaining a second laser pulse and onward.
摘要:
A laser controlling method can generate laser of stable laser pulses, and eliminate useless time from a machining procedure. The method uses a gain medium and a Q-switch, and emits exciting light to the gain medium, thereby setting the Q-switch in a continuous oscillation mode, and prepares a given Q-switch pause time before a laser pulse is generated. When the continuous oscillation is kept going longer than a given time, the control method sets a Q-switch pause time for obtaining a first laser pulse to be different from a Q-switch pause time for obtaining a second laser pulse and onward.
摘要:
A laser machining apparatus machines a workpiece at uniform intensity by converting a CO2 laser beam to uniform intensity using an intensity-converting element and a phase-matching element. The optical transmission system is configured such that the starting point of the laser beam pointing vector and the exit face of the intensity-converting element are mutually conjugated with respect to the optical transmission system. This structure offers stable machining by ensuring that the laser beam always enters the intensity-converting element at its center, even if the pointing vector of the laser beam shifts.
摘要:
A laser controlling method can generate laser of stable laser pulses, and eliminate useless time from a machining procedure. The method uses a gain medium and a Q-switch, and emits exciting light to the gain medium, thereby setting the Q-switch in a continuous oscillation mode, and prepares a given Q-switch pause time before a laser pulse is generated. When the continuous oscillation is kept going longer than a given time, the control method sets a Q-switch pause time for obtaining a first laser pulse to be different from a Q-switch pause time for obtaining a second laser pulse and onward.
摘要:
A laser controlling method can generate laser of stable laser pulses, and eliminate useless time from a machining procedure. The method uses a gain medium and a Q-switch, and emits exciting light to the gain medium, thereby setting the Q-switch in a continuous oscillation mode, and prepares a given Q-switch pause time before a laser pulse is generated. When the continuous oscillation is kept going longer than a given time, the control method sets a Q-switch pause time for obtaining a first laser pulse to be different from a Q-switch pause time for obtaining a second laser pulse and onward.
摘要:
A laser controlling method can generate laser of stable laser pulses, and eliminate useless time from a machining procedure. The method uses a gain medium and a Q-switch, and emits exciting light to the gain medium, thereby setting the Q-switch in a continuous oscillation mode, and prepares a given Q-switch pause time before a laser pulse is generated. When the continuous oscillation is kept going longer than a given time, the control method sets a Q-switch pause time for obtaining a first laser pulse to be different from a Q-switch pause time for obtaining a second laser pulse and onward.