摘要:
In an endoscopic imaging system, a signal representing an object image produced by a scope and projected by a camera head is processed by a CCU and displayed as an endoscopic image on a TV monitor. The object image is stored as digital image data on a memory in the CCU, read as image data of a still image, and recorded on a PC card mounted in a PC card slot. The PC card slot is formed in the front panel or the like of the CCU. A lid member or the like functioning as an anti-liquid invasion member and shield can be located at an opening of the slot.
摘要:
A camera control unit for processing a signal output from an imaging device incorporated in an endoscope is provided with an analog video signal output terminal through which a video signal is output to a monitor, and a digital video signal output terminal to which a still image-specific or motion picture-specific expansion unit is coupled in a freely detachable manner. By handling a release switch, a still image or motion picture can be recorded digitally. Even when the recorded image data is edited or subjected to any other processing, deterioration of image quality can be prevented. An imaging system having these advantages can be realized on a small scale.
摘要:
In an endoscopic imaging system, a signal representing an object image produced by a scope and projected by a camera head is processed by a CCU and displayed as an endoscopic image on a TV monitor. The object image is stored as digital image data on a memory in the CCU, read as image data of a still image, and recorded on a PC card mounted in a PC card slot. The PC card slot is formed in the front panel or the like of the CCU. A lid member or the like functioning as an anti-liquid invasion member and shield can be located at an opening of the slot.
摘要:
A camera control unit for processing a signal output from an imaging device incorporated in an endoscope is provided with an analog video signal output terminal through which a video signal is output to a monitor, and a digital video signal output terminal to which a still image-specific or motion picture-specific expansion unit is coupled in a freely detachable manner. By handling a release switch, a still image or motion picture can be recorded digitally. Even when the recorded image data is edited or subjected to any other processing, deterioration of image quality can be prevented. An imaging system having these advantages can be realized on a small scale.
摘要:
In an endoscopic imagining system, a signal representing an object image produced by a scope and projected by a camera head is processed by a CCU and displayed as an endoscopic image on a TV monitor. The object image is stored as digital image data on a memory in the CCU, read as image data of a still image, and recorded on a PC card mounted in a PC card slot. The PC card slot is formed in the front panel or the like of the CCU. A lid member or the like functioning as an anti-liquid invasion member and shield can be located at an opening of the slot.
摘要:
In an endoscopic apparatus, when the dynamic range expansion on/off switch is turned on, a CPU changes a switch from one contact over to another. Red, green, and blue digital signals sent from a knee and gamma circuit are output to respective dynamic range expanding circuits. Thus, the dynamic ranges for the digital signals are expanded. On the other hand, when the CPU changes another switch from one contact over to the other, a light adjustment signal output from an operational amplifier is then driven to a level causing a diaphragm in a light source unit to open further. Consequently, an increased amount of illumination light is supplied to the incident end of a light guide running through an endoscope. Thus, when a dynamic range is expanded, a halation effect will not occur in imaging of an object located at a point near the distal end of the endoscope. Moreover, insufficiency of illumination light will not occur in the imaging of an object located at a point far from the endoscope distal end. The dynamic range can therefore be expanded efficiently. An endoscopic image of the interior of a body cavity can be viewed with the body cavity set to a desired brightness level all points ranging from a near point to a far point within the body cavity.
摘要:
An object is imaged continuously during a first exposure time and a second exposure time shorter than the first exposure time. Weights, one of which decreases monotonously and the other of which increases monotonously, are applied to first and second resultant image signals under the condition that the sum of the weights is 1. The first and second image signals that have been weighted are added up, thus producing a synthetic picture signal. When a luminance level is low, the ratio of the first image signal, which has been produced during the longer exposure time, to the second image signal is increased. This results in an image demonstrating a high signal-to-noise ratio. When the luminance level is high, the ratio of the second image signal, which has been produced during the shorter exposure time, to the first image signal is increased. This results in a synthetic image that proves a wide dynamic range, depicts a smoothly varying brightness level, and exhibits a characteristic of being seen as almost natural. Moreover, the first and second image signals are produced to resemble those produced during mutually different exposure times by controlling an amount of light incident on an imaging device or by varying an amount of illumination light.
摘要:
When an endoscopic imaging system is employed in, for example, the department of otorhinology, a color processing expansion substrate, a still image production expansion substrate, and a still image compression/recording substrate are stacked on an expansion connector formed on a main substrate and are thus connected to the main substrate. A data bus and an address bus extending from a control unit mounted on the main substrate are linked to the expansion substrates. A sync signal generator outputs various kinds of sync signals including a clock signal CLK, a horizontal sync signal HD, a vertical sync signal VD, a field identification signal FLD, and a composite sync signal CSYNC to the expansion substrates.
摘要:
An imaging apparatus having an imaging device for imaging an object in cooperation with an endoscope is connected to a video processing unit for producing a standard video signal so that it can be disconnected freely. A signal delay occurs over a signal line linking the imaging device and the video processing unit. For this reason, a timing generator and a phase adjustment circuit are incorporated in the imaging apparatus. The timing generator generates driving signals used to drive the imaging device, and the phase adjustment circuit adjusts the phases of the driving signals so that an output signal of the imaging device will be input to the video processing unit according to predetermined timing. Even when the signal line has a different length from any other or the imaging device offers a different number of pixels from any other, the difference can be readily coped with owing to the imaging apparatus. This leads to alleviation of a load incurred by the video processing unit.
摘要:
To provide an image pickup system having CCDs 25 driven at different frequencies respectively which can drive each CCD 25 with a predetermined frequency if a detachable camera head (or electronic endoscope) 28 is used and also can process a signal processing clock of a video processing circuit 29 with one type of clock. A drive signal of the predetermined frequency supplied to the CCD is produced via a generating circuit CXO 155 in the video processing circuit 29, a frequency dividing circuit 132 and a timing generator (T.G.) 131. A CCD signal outputted from the CCD 25 is inputted to a line memory 139 in a floating circuit 135. As a writing clock (WCK) of the line memory 139, the one which is divided in the frequency dividing circuit 132 to a frequency in accordance with the CCD 25 to be used is used, and as a reading clock (RCK), the one of one type of frequency is used without regard to the CCD 25 to be used. Hence, it is possible to perform the signal processing of a secondary circuit 136 of the line memory 139 and following ones always with a common generating clock.