Abstract:
When an endoscopic imaging system is employed in, for example, the department of otorhinology, a color processing expansion substrate, a still image production expansion substrate, and a still image compression/recording substrate are stacked on an expansion connector formed on a main substrate and are thus connected to the main substrate. A data bus and an address bus extending from a control unit mounted on the main substrate are linked to the expansion substrates. A sync signal generator outputs various kinds of sync signals including a clock signal CLK, a horizontal sync signal HD, a vertical sync signal VD, a field identification signal FLD, and a composite sync signal CSYNC to the expansion substrates.
Abstract:
An endoscope system includes an imaging unit for converting an image of an object into an image signal, and an automatic amount-of-light setting circuit for setting an amount of light output from a light source apparatus on the basis of the image signal provided by the imaging unit. According to a setting signal sent from the automatic amount-of-light setting circuit, the amount of light output from the light source apparatus is adjusted. Aside from the automatic amount-of-light setting circuit, a device used to set an amount of light manually is included. The automatic amount-of-light setting circuit and manual amount-of-light setting device can be switched selectively by means of a switch. Consequently, a drawback of the automatic amount-of-light setting circuit occurring when the endoscope is removed from a human body, that is, the drawback that when control is given for lowering the level of the image signal, the amount of light is increased will not take place. Control can be given for decreasing the amount of source light.
Abstract:
An endoscope system includes: an endoscope equipped with an insertion portion, and an image pickup unit disposed at a distal end portion of the insertion portion; an illumination unit detachably connected to the endoscope; an imaging mode input unit used to set an imaging mode of the endoscope to one of a normal-light mode and a special-light mode; a processing condition selection unit which selects a processing condition for a color correction process of an endoscopic image based on the imaging mode; and a processor detachably connected to the endoscope and equipped with an image processing unit which performs the color correction process, under the processing condition selected by the processing condition selection unit, with respect to each of hue regions partitioned by at least eight reference color axes including six reference color axes which divide a color space into R (red), M (magenta), B (blue), C (cyan), G (green), and Y (yellow) hue regions and at least two reference color axes established additionally based on the imaging mode.
Abstract:
An endoscope device is proposed for dealing with an erroneous operation of a surgeon. An endoscope device has an endoscope and a processor, wherein the endoscope has a switch unit and the processor has a CPU and an operating panel. In the event that the CPU of the processor detects that, of a first instruction signal transmitted from the switch unit and a second instruction signal transmitted from the operating panel, the instructions for performing the predetermined operation are not performed normally with one of the instruction signals, and instructions for performing an operation other than the predetermined operation is performed normally with the other instruction signal, the CPU stops the transmission of one of the instruction signals, and validates the operation content instructed by the other instruction signal.
Abstract:
An endoscope system includes: an endoscope equipped with an insertion portion, and an image pickup unit disposed at a distal end portion of the insertion portion; an illumination unit detachably connected to the endoscope; an imaging mode input unit used to set an imaging mode of the endoscope to one of a normal-light mode and a special-light mode; a processing condition selection unit which selects a processing condition for a color correction process of an endoscopic image based on the imaging mode; and a processor detachably connected to the endoscope and equipped with an image processing unit which performs the color correction process, under the processing condition selected by the processing condition selection unit, with respect to each of hue regions partitioned by at least eight reference color axes including six reference color axes which divide a color space into R (red), M (magenta), B (blue), C (cyan), G (green), and Y (yellow) hue regions and at least two reference color axes established additionally based on the imaging mode.
Abstract:
To provide an image pickup system having CCDs 25 driven at different frequencies respectively which can drive each CCD 25 with a predetermined frequency if a detachable camera head (or electronic endoscope) 28 is used and also can process a signal processing clock of a video processing circuit 29 with one type of clock. A drive signal of the predetermined frequency supplied to the CCD is produced via a generating circuit CXO 155 in the video processing circuit 29, a frequency dividing circuit 132 and a timing generator (T.G.) 131. A CCD signal outputted from the CCD 25 is inputted to a line memory 139 in a floating circuit 135. As a writing clock (WCK) of the line memory 139, the one which is divided in the frequency dividing circuit 132 to a frequency in accordance with the CCD 25 to be used is used, and as a reading clock (RCK), the one of one type of frequency is used without regard to the CCD 25 to be used. Hence, it is possible to perform the signal processing of a secondary circuit 136 of the line memory 139 and following ones always with a common generating clock.
Abstract:
A camera control unit for processing a signal output from an imaging device incorporated in an endoscope is provided with an analog video signal output terminal through which a video signal is output to a monitor, and a digital video signal output terminal to which a still image-specific or motion picture-specific expansion unit is coupled in a freely detachable manner. By handling a release switch, a still image or motion picture can be recorded digitally. Even when the recorded image data is edited or subjected to any other processing, deterioration of image quality can be prevented. An imaging system having these advantages can be realized on a small scale.
Abstract:
In an endoscopic imaging system, a signal representing an object image produced by a scope and projected by a camera head is processed by a CCU and displayed as an endoscopic image on a TV monitor. The object image is stored as digital image data on a memory in the CCU, read as image data of a still image, and recorded on a PC card mounted in a PC card slot. The PC card slot is formed in the front panel or the like of the CCU. A lid member or the like functioning as an anti-liquid invasion member and shield can be located at an opening of the slot.
Abstract:
A camera control unit for processing a signal output from an imaging device incorporated in an endoscope is provided with an analog video signal output terminal through which a video signal is output to a monitor, and a digital video signal output terminal to which a still image-specific or motion picture-specific expansion unit is coupled in a freely detachable manner. By handling a release switch, a still image or motion picture can be recorded digitally. Even when the recorded image data is edited or subjected to any other processing, deterioration of image quality can be prevented. An imaging system having these advantages can be realized on a small scale.
Abstract:
A stereoscopic endoscope including an objective lens system for forming an image of an object which objective lens system is arranged at the front end of an inserting section and has a single optical axis; an image transmission device coaxially arranged with the objective lens system and adapted to transmit the image formed by the objective lens system; a pupil dividing device for dividing the image transmitted through the objective lens system and the image transmission device so as to obtain left and right images of the object; an image sensing device for picking up the left and right images obtained by the pupil dividing device; a first support structure containing at least the objective lens system; and a second support structure containing at least the pupil dividing device and the image sensing device, wherein the first and second support structures are rotatable relative to each other around an axis extending along the longitudinal dimension of the endoscope.