摘要:
An operation method is provided for a polymer electrolyte fuel cell in an optimum operating condition by regulating the cell by a function represented by a gas flow rate and the difference between a saturated steam pressure and an actual steam pressure, by regulating an in-plane temperature distribution obtained by a cooling water flow direction and by the regulation of a cooling water inlet temperature and a cooling water flow amount; a gas supply amount; a supplied moisture amount; and a current density.
摘要:
A polymer electrolyte fuel cell comprising a hydrogen-ion conductive polymer electrolyte membrane, an anode and a cathode sandwiching the hydrogen-ion conductive polymer electrolyte membrane, an anode-side conductive separator plate having gas flow channels for supplying a fuel gas to the anode, and a cathode-side conductive separator plate having gas flow channels for supplying an oxidant gas to the cathode, wherein the anode-side and cathode-side conductive separator plates have a substantially rectangular part in contact with the anode or cathode in which the length of a longer side is equal to or more than twice the length of a shorter side, and the oxidant gas flow channels have a linear part formed along the longer side of the rectangular part.
摘要:
Disclosed is a polymer electrolyte fuel cell having an improved separator plate. The fuel cell comprises a solid polymer electrolyte membrane; an anode and a cathode sandwiching the solid polymer electrolyte membrane therebetween; an anode-side conductive separator plate having a gas flow path for supplying a fuel gas to the anode; and a cathode-side conductive separator plate having a gas flow path for supplying an oxidant gas to the cathode, wherein each of the anode-side and cathode-side conductive separator plates is composed of a metal and a conductive coat which has resistance to oxidation and covers a surface of the metal. Alternatively, the above-mentioned separator plates are formed of a metal and a coat having resistance to oxidation and have roughened surfaces with recessions and protrusions, and portions of a top surface of the protruding portions, which lack the coat, are electrically connected to an electrode.
摘要:
The present invention discloses an operation method for a polymer electrolyte fuel cell in an optimum operating condition by regulating the cell by a function represented by a gas flow rate and the difference between a saturated steam pressure and an actual steam pressure, by regulating an in-plane temperature distribution obtained by a cooling water flow direction and by the regulations of a cooling water inlet temperature and a cooling water flow amount; a gas supply amount; a supplied moisture amount; and a current density.
摘要:
A polymer electrolyte fuel cell comprises a separator plate having a gas channel for supplying an oxidant gas or a fuel gas to an electrode, said separator plate comprising a metal plate, a conductive film formed on the surface of the metal plate, and a diffused layer resulting from diffusion of a material of the conductive film formed between the metal plate and the conductive film. The fuel cell produces stable output free from corrosion or dissolution of the metal plate even in a long-term operation.
摘要:
In a polymer electrolyte fuel cell including a hydrogen ion conductive polymer electrolyte membrane; a pair of electrodes composed of catalyst layers sandwiching the hydrogen ion conductive polymer electrolyte membrane between them and gas diffusion layers in contact with the catalyst layers; a conductive separator plate having a gas flow channel for supplying a fuel gas to one of the electrodes; and a conductive separator plate having a gas flow channel for supplying an oxidant gas to the other electrode, in order to bring a hydrogen ion conductive polymer electrolyte and a catalyst metal of the catalyst layers containing the hydrogen ion conductive polymer electrolyte and conductive carbon particles carrying the catalyst metal sufficiently and uniformly into contact with each other, the polymer electrolyte is provided in pores of an agglomerate structure of the conductive carbon particles. Consequently, the reaction area inside the electrodes is increased, and higher performance is exhibited.
摘要:
The invention relates to a polymer electrolyte fuel cell comprising a polymer electrolyte film of hydrogen ion conduction; an anode and a cathode between which the electrolyte film is placed; a conductive separator having a channel through which fuel gas is supplied to the anode, and a conductive separator having a channel through which oxidative gas is supplied to the cathode. The conventional conductive separator uses a carbon material that is unlikely to be less costly, and an attempt has been made to use a metal plate in place of the carbon material. Since the metal plate is exposed to an oxidizing atmosphere at high temperature for a long time, however, corrosion may occur, disadvantageously causing the efficiency of power generation to decrease gradually. The polymer electrolyte fuel cell of this invention uses an acid-resistant conductive airtight elastomer as a conductive separator for substantial cost reduction.
摘要:
A method for producing a membrane electrode assembly 1 for solid polymer electrolyte fuel cell, the membrane electrode assembly 1 including a solid polymer electrolyte membrane 2 comprising an ion exchange membrane, a first electrode 3 having a first catalyst layer 31, and a second electrode 4 having a second catalyst layer 41, the first electrode 3 and the second electrode 4 being disposed so as to be opposed to each other via the ion exchange membrane, the method including: applying a coating solution containing a catalyst onto a base film 101 to form a first catalyst layer 31; applying a coating solution containing an ion exchange resin dissolved or dispersed in a liquid onto the first catalyst layer 31 to form an ion exchange membrane; then applying a coating solution containing a catalyst onto the ion exchange membrane to form a second catalyst layer 41; and finally, peeling off the base film 101 from a resulting laminate. According to this method, it is possible to produce membrane electrode assembly 1 for high-performance solid polymer electrolyte fuel cell having catalyst layers each having a uniform thickness efficiently and continuously.
摘要:
A polymer electrolyte fuel cell stack that includes a cell laminate having a plurality of unit cells, which are laid one upon another and each of which includes a polymer electrolyte membrane, a pair of electrodes arranged across the polymer electrolyte membrane and having respective catalytic reaction layers, a separator having means for feeding a supply of fuel gas containing hydrogen gas to one of the electrodes, another separator having means for feeding a supply of oxidant gas to the other of the electrodes, and a manifold for feeding the supply of fuel gas or the supply of oxidant gas to the respective electrode and disposed on a side face of each unit cell. In the polymer electrolyte fuel cell stack, a sealing portion is disposed at least in the vicinity of each electrode. The polymer electrolyte fuel cell stack has excellent durability and productivity. Gasket sealing portions, a sealing portion for cooling water, and sealing portions for water and gas in an internal humidifying unit are composed of a polymer compound that has polyisobutylene as the backbone structure. This arrangement ensures high reliability.
摘要:
The present invention provides a fuel cell stack including a plurality of unit cells laid one upon another. Each of the unit cells includes an electrolyte, a pair of electrodes that are arranged across the electrolyte and respectively have a catalytic reaction layer, and a separator having means for feeding a supply of gaseous fuel to one of the electrodes and a supply of oxidant gas to the other of the electrodes. The separator is a laminate including a gas-tight conductive plate A and another conductive plate B having at least one slit, which continuously meanders from one end to another end of the conductive plate B. The technique of the present invention gives a compact fuel cell stack assembled by a simple process.