摘要:
A passivation film having a predetermined width from an outer peripheral end portion toward an inner side and extending along the outer peripheral end portion is formed on a front surface of a semiconductor substrate. An outer peripheral end surface orthogonal to the front surface and a rear surface is formed by grinding the outer peripheral end portion of the semiconductor substrate. A thickness of the semiconductor substrate is reduced to a predetermined thickness by grinding the rear surface. The ground rear surface is etched by discharging a mixed acid onto the rear surface while rotating the semiconductor substrate with the rear surface facing upward, to remove a fracture layer. Thereby, chipping or cracking of the semiconductor substrate is suppressed.
摘要:
A semiconductor device includes a base layer that has a first conductivity type, a source layer that is formed on the base layer and has a second conductivity type, and an insulating film that is formed on the source layer. The semiconductor device further includes a plurality of gate structures that penetrate the base layer, and a plurality of conductive parts that penetrate the insulating film and the source layer and electrically connect the source layer and the base layer to each other. The gate structures are formed in a stripe shape in plan view. Parts in which the conductive portion is connected to the base layer are formed in a stripe shape in plan view, and are formed between the gate structures. Further, a dimension of the part in which the source layer and the base layer are in contact with each other between the gate structure and the conductive portion is 0.36 μm or more.
摘要:
A passivation film having a predetermined width from an outer peripheral end portion toward an inner side and extending along the outer peripheral end portion is formed on a front surface of a semiconductor substrate. An outer peripheral end surface orthogonal to the front surface and a rear surface is formed by grinding the outer peripheral end portion of the semiconductor substrate. A thickness of the semiconductor substrate is reduced to a predetermined thickness by grinding the rear surface. The ground rear surface is etched by discharging a mixed acid onto the rear surface while rotating the semiconductor substrate with the rear surface facing upward, to remove a fracture layer. Thereby, chipping or cracking of the semiconductor substrate is suppressed.
摘要:
A semiconductor device includes a base layer that has a first conductivity type, a source layer that is formed on the base layer and has a second conductivity type, and an insulating film that is formed on the source layer. The semiconductor device further includes a plurality of gate structures that penetrate the base layer, and a plurality of conductive parts that penetrate the insulating film and the source layer and electrically connect the source layer and the base layer to each other. The gate structures are formed in a strip shape in plan view. Parts in which the conductive portion is connected to the base layer are formed in a stripe shape in plan view, and are formed between the gate structures. Further, a dimension of the part in which the source layer and the base layer are in contact with each other between the gate structure and the conductive portion is 0.36 μm or more.
摘要:
A method of manufacturing a power semiconductor device according to the present invention includes the steps of: (a) forming a silicon nitride film on a semiconductor substrate; (b) after the step (a), forming a ring-shaped trench along a peripheral portion of the semiconductor substrate 6; (c) forming a first silicon oxide film on an inner surface of the trench; (d) after the step (c), forming a second silicon oxide film on an entire surface of the semiconductor substrate to bury the trench; (e) planarizing the second silicon oxide film by using the silicon nitride film as a stopper; and (f) forming a third silicon oxide film in a region in which the silicon nitride film is removed.
摘要:
A method of manufacturing a power semiconductor device according to the present invention includes the steps of: (a) forming a silicon nitride film on a semiconductor substrate; (b) after the step (a), forming a ring-shaped trench along a peripheral portion of the semiconductor substrate 6; (c) forming a first silicon oxide film on an inner surface of the trench; (d) after the step (c), forming a second silicon oxide film on an entire surface of the semiconductor substrate to bury the trench; (e) planarizing the second silicon oxide film by using the silicon nitride film as a stopper; and (f) forming a third silicon oxide film in a region in which the silicon nitride film is removed.
摘要:
In a semiconductor device according to the present invention, an electrode layer and a recessed part are formed on a surface of a semiconductor substrate. Further, in the semiconductor substrate, a RESURF layer that is in contact with a bottom surface of the recessed part and the electrode layer is formed. In addition, an insulating film is formed on an upper surface of the semiconductor substrate so as to fill the recessed part. Moreover, a field plate electrode is formed on the insulating film above the recessed part.
摘要:
In a semiconductor device according to the present invention, an electrode layer and a recessed part are formed on a surface of a semiconductor substrate. Further, in the semiconductor substrate, a RESURF layer that is in contact with a bottom surface of the recessed part and the electrode layer is formed. In addition, an insulating film is formed on an upper surface of the semiconductor substrate so as to fill the recessed part. Moreover, a field plate electrode is formed on the insulating film above the recessed part.
摘要:
A power semiconductor device according to the present invention, which has a termination structure in which a field plate is provided on an insulating film filled in a recessed region formed in a semiconductor substrate and includes a plurality of unit cells connected in parallel, includes: a gate wiring region in which gate wiring electrically connected to each gate electrode of the plurality of unit cells is provided; and a gate pad region electrically connected to the gate wiring region, wherein the gate wiring region is disposed on the insulating film filled in a recessed region formed in the semiconductor substrate.
摘要:
A semiconductor device includes a semiconductor substrate having a collector layer in which the carrier concentration is maximized at a carrier concentration peak position that is 1 μm or more from a surface of the semiconductor substrate. The semiconductor device further includes a collector electrode formed in contact with a surface of the collector layer.