摘要:
A semiconductor device comprises a semiconductor substrate having a main surface; a semiconductor layer of a first conduction type provided on the main surface of said semiconductor substrate; a first buried layer of the first conduction type provided between said semiconductor layer and said semiconductor substrate; a first connection region of the first conduction type provided around said first buried layer, said first connection region extending from the surface of said semiconductor layer to said first buried layer; a switching element provided in the surface region of said semiconductor layer on said first buried layer; and a low breakdown-voltage element provided in a surface region of said semiconductor layer, said low breakdown-voltage element being closer to said first connection region than said switching element and having lower breakdown voltage than that of said switching element.
摘要:
A semiconductor device comprises a substrate the surface of which is formed of an insulation region, a high resistance active layer of a first conductivity type formed on the substrate, a first semiconductor region of the first conductivity type having an impurity concentration higher than that of the active layer and selectively formed on a surface of the active layer, an emitter region of the second conductivity type selectively formed on a surface of the semiconductor region, a collector region of the second conductivity type selectively formed on a surface of the active layer, and a base contact region of the first conductivity type selectively formed on a surface of the active layer in separation from the emitter region and the collector region, respectively. When an inversion layer is formed at an interface between the insulation region and the active layer due to the voltage of the substrate, the semiconductor region suppresses an emitter current flowing via the inversion layer thereby allowing the emitter current to flow on the surface side of the active layer.
摘要:
An N-MOSFET is formed on an SOI substrate consisting of a semiconductor substrate, an insulating layer and an n−-active layer. A p-well layer, an n-RESURF layer, and an n-diffusion layer are formed in the surface of the n−-active layer between a source electrode and a drain electrode by means of impurity diffusion. The diffusion regions of the p-well layer and the n-RESURF layer overlap with each other. An end of the n-RESURF layer reaches a position below a gate electrode. The diffusion regions of the p-well layer and the n-diffusion layer do not overlap with each other, so that the n-RESURF layer has a region in direct contact with the n−-active layer between the p-well layer and the n-diffusion layer.
摘要:
A semiconductor device comprises a high side switching element, a driver circuit, and a low side switching element. The high side switching element is formed on a first semiconductor substrate, has a current path to one end of which an input voltage is supplied, and the other end of the current path is connected to an inductance. The driver circuit is formed on the first semiconductor substrate, on which the high side switching element is formed, and drives the high side switching element. The low side switching element is formed on a second semiconductor substrate separate from the first semiconductor substrate, and has a drain connected to the inductance and a source supplied with a reference potential.
摘要:
A semiconductor device comprises a high side switching element, a driver circuit, and a low side switching element. The high side switching element is formed on a first semiconductor substrate, has a current path to one end of which an input voltage is supplied, and the other end of the current path is connected to an inductance. The driver circuit is formed on the first semiconductor substrate, on which the high side switching element is formed, and drives the high side switching element. The low side switching element is formed on a second semiconductor substrate separate from the first semiconductor substrate, and has a drain connected to the inductance and a source supplied with a reference potential.
摘要:
A MOS field-effect transistor includes a semiconductor substrate of a first-conductivity type, a semiconductor layer of the first-conductivity type, a source region of a second-conductivity type, a first drain region of the second-conductivity type, a resurf layer of the second-conductivity type provided in the surface of the semiconductor layer between the source region and the first drain region in contact with the first drain region, and having a lower impurity concentration than the first drain region, a gate insulation film, and a gate electrode provided on the gate insulation film between the source region and resurf layer. A Schottky barrier diode includes a second drain region of the second-conductivity type provided in the surface of the semiconductor layer separate from the first drain region in a direction away from the gate electrode, and a Schottky electrode provided on the semiconductor layer between the first and second drain regions.
摘要:
A MOS field-effect transistor includes a semiconductor substrate of a first-conductivity type, a semiconductor layer of the first-conductivity type, a source region of a second-conductivity type, a first drain region of the second-conductivity type, a resurf layer of the second-conductivity type provided in the surface of the semiconductor layer between the source region and the first drain region in contact with the first drain region, and having a lower impurity concentration than the first drain region, a gate insulation film, and a gate electrode provided on the gate insulation film between the source region and resurf layer. A Schottky barrier diode includes a second drain region of the second-conductivity type provided in the surface of the semiconductor layer separate from the first drain region in a direction away from the gate electrode, and a Schottky electrode provided on the semiconductor layer between the first and second drain regions.
摘要:
A semiconductor device comprises a high side switching element, a driver circuit, and a low side switching element. The high side switching element is formed on a first semiconductor substrate, has a current path to one end of which an input voltage is supplied, and the other end of the current path is connected to an inductance. The driver circuit is formed on the first semiconductor substrate, on which the high side switching element is formed, and drives the high side switching element. The low side switching element is formed on a second semiconductor substrate separate from the first semiconductor substrate, and has a drain connected to the inductance and a source supplied with a reference potential.
摘要:
A semiconductor device comprises a high side switching element, a driver circuit, and a low side switching element. The high side switching element is formed on a first semiconductor substrate, has a current path to one end of which an input voltage is supplied, and the other end of the current path is connected to an inductance. The driver circuit is formed on the first semiconductor substrate, on which the high side switching element is formed, and drives the high side switching element. The low side switching element is formed on a second semiconductor substrate separate from the first semiconductor substrate, and has a drain connected to the inductance and a source supplied with a reference potential.
摘要:
A semiconductor device includes: a semiconductor substrate, at least a surface portion thereof serving as a low-resistance drain layer of a first conductivity type; a first main electrode connected to the low-resistance drain layer; a high-resistance epitaxial layer of a second-conductivity type formed on the low-resistance drain layer; a second-conductivity type base layer selectively formed on the high-resistance epitaxial layer; a first-conductivity type source layer selectively formed in a surface portion of the second-conductivity type base layer; a trench formed in a region sandwiched by the second-conductivity type base layers with a depth extending from the surface of the high-resistance epitaxial layer to the semiconductor substrate; a jfet layer of the first conductivity type formed on side walls of the trench; an insulating layer formed in the trench; an LDD layer of the first-conductivity type formed in a surface portion of the second-conductivity type base layer so as to be connected to the first-conductivity type jfet layer around a top face of the trench; a control electrode formed above the semiconductor substrate so as to be divided into a plurality of parts, and formed on a gate insulating film formed on a part of the surface of the LDD layer, on surfaces of end parts of the first-conductivity type source layer facing each other across the trench, and on a region of the surface of the second-conductivity type base layer sandwiched by the LDD layer and the first-conductivity type source layer; and a second main electrode in ohmic contact with the first-conductivity type source layer and the second-conductivity type base layer so as to sandwich the control electrode.