Abstract:
A kit for injecting a biomaterial into an intradiscal space accessed through an opening in the disc annulus comprises a plurality of needles, each sized for introduction through the annulus opening with a passageway for injecting the biomaterial therethrough, and each including a distal end to be disposed within the intradiscal space when the needle extends through the annulus opening. Each needle includes a stop affixed thereto at different pre-determined distances from the distal end to define the location of the distal end within the intradiscal space when the needle extends through the opening in the annulus. The kit further includes a plurality of seals defining a bore for sliding engagement with a needle, each of the plurality of seals including a sealing face for engaging the annulus around the needle. Each sealing face defines a differently configured area of contact, such as circular, elliptical, tapered and threaded.
Abstract:
A method for treating a spinal disc comprises the steps of: determining the integrity of the annulus by subjecting the annulus to a first pressure applied internally of the annulus; providing access to the nucleus pulposus through the annulus without removing any tissue from the annulus or from the nucleus pulposus; and sealably injecting curable biomaterial through the annulus access directly into the nucleus pulposus at a second pressure correlated with the first pressure. The integrity of the annulus may be determined by a pre-operative discogram using a contrast medium that has a viscosity substantially similar to the viscosity of the biomaterial to be injected. The curable biomaterial may be injected under a pressure sufficient to distract opposing vertebral bodies communicating with the disc space.
Abstract:
A vented needle is provided for sealably injecting biomaterial into an intradiscal space interiorly of the annulus of a spinal disc and for providing an exhaust for the intradiscal space. The vented needle comprises a compressible seal body for pressing against an outer surface of the annulus, and a needle extending through the seal. The needle may be configured to connect to a syringe for pressure injection of the biomaterial. The seal includes a vent extending therethrough with an opening for communication with the intradiscal space and an opening for the discharge of excess biomaterial filling the intradiscal space. A kit of parts is also provided for use in the treatment of a spinal disc, the kit comprising the vented needle and an inflatable trial device. The trial device is removably introduced into the intradiscal space and inflated to determine the available size of said intradiscal space.
Abstract:
A kit of parts is provided that comprises: a cannula, the distal end of the cannula adapted to be inserted through the disc annulus; an injection needle, the distal end adapted to be inserted into the proximal end of the cannula and configured for relatively close sliding fit therewithin; and a syringe for containing a quantity of curable biomaterial, the syringe adapted to be coupled to the proximal end of the needle and to inject the biomaterial into the needle under pressure. The kit may further comprise a quantity of curable biomaterial that is selected to have upon curing strong adhesive properties such as a protein polymer.
Abstract:
A method for treating a diseased or damaged spinal disc comprises the steps of: (a) providing access to the nucleus pulposus through the annulus; (b) removing at least a portion of the nucleus pulposus to create an intradiscal space; determining the size of the intradiscal space; and (c) sealably introducing under pressure a curable biomaterial through the annulus directly into the intradiscal space. The method may include the additional steps of applying a force to distract the opposing vertebral bodies about the intradiscal space and then removing the distraction force after the biomaterial has cured. The step of determining the size of the intradiscal space may be accomplished by expanding a compliant balloon within the intradiscal space using a contrast medium capable of visualization under fluoroscopy. The curable material is sealably introduced through a vented needle inserted through the opening. The curable biomaterial is introduced until a quantity of the material flows into the vent.
Abstract:
A vented needle assembly is provided for sealably injecting biomaterial into an intradiscal space interiorly of the annulus of a spinal disc and for providing an exhaust for the intradiscal space. The vented needle assembly comprises a compressible seal body for pressing against an outer surface of the annulus, and a needle extending through the seal. The needle may be configured to connect to a syringe for pressure injection of the biomaterial. The seal includes a vent extending therethrough with an opening for communication with the intradiscal space and an opening for the discharge of excess biomaterial filling the intradiscal space. A kit of parts is also provided for use in the treatment of a spinal disc, the kit comprising the vented needle assembly and an inflatable trial device. The trial device is removably introduced into the intradiscal space and inflated to determine the available size of the intradiscal space.
Abstract:
A kit for injecting a biomaterial into an intradiscal space accessed through an opening in the disc annulus comprises a plurality of needles, each sized for introduction through the annulus opening with a passageway for injecting the biomaterial therethrough, and each including a distal end to be disposed within the intradiscal space when the needle extends through the annulus opening. Each needle includes a stop affixed thereto at different pre-determined distances from the distal end to define the location of the distal end within the intradiscal space when the needle extends through the opening in the annulus. The kit further includes a plurality of seals defining a bore for sliding engagement with a needle, each of the plurality of seals including a sealing face for engaging the annulus around the needle. Each sealing face defines a differently configured area of contact, such as circular, elliptical, tapered and threaded.
Abstract:
A method for treating a spinal disc having an outer relatively intact annulus defining a disc space and an inner defective nucleus pulposus within the disc space, comprises the steps of: determining the integrity of the annulus by subjecting the annulus to a first pressure applied internally of the annulus; providing access to the nucleus pulposus through the annulus without removing any tissue from the annulus or from the nucleus pulposus; and sealably injecting curable biomaterial through the annulus access directly into the nucleus pulposus at a second pressure correlated with the first pressure. The integrity of the annulus may be determined by a pre-operative discogram using a contrast medium that has a viscosity substantially similar to the viscosity of the biomaterial to be injected. The needle is placed initially within the center of the nucleus pulposus and then withdrawn during the injection to approximately the inner border of the annulus. The second pressure is then maintained until the biomaterial is substantially cured. In steps, the curable biomaterial has strong adhesive properties and is capable of injection under pressure to fill fissures in the nucleus pulposus. The curable biomaterial may be injected under a pressure sufficient to distract opposing vertebral bodies communicating with the disc space.
Abstract:
An assembly for sealably injecting a fluent material into an intradiscal space accessed through an opening in the annulus of a spinal disc comprises a cannula having a passageway for injecting the fluent material therethrough into the intradiscal space, a seal having a sealing surface for sealing engagement with the outer surface of the disc annulus and defining a central opening for, and an articulating joint defined between the central opening of the seal and the cannula configured to permit relative articulation between the components. The assembly may further comprise an anchor element extending through the central opening of the seal, the anchor element including an elongated threaded body sized for threaded engagement within the opening in the disc annulus and having a head configured to engage a distal end of the cannula.
Abstract:
A syringe-to-syringe mixing apparatus comprises first and second syringes adapted to be coupled at their respective outlets to fluidly connect the syringes. The first syringe includes a plunger having a hollow plunger barrel and a distal end defining a lumen therethrough. The lumen is initially closed by a septum, which in one embodiment is an elastomeric stopper mounted over the end of the plunger. The mixing apparatus further includes a third syringe slidably disposed within the plunger barrel. The third syringe includes a hollow needle adapted to pierce the septum to allow fluid from the third syringe to be injected into fluid within the coupled first and second syringes.