Abstract:
A syringe-to-syringe mixing apparatus comprises first and second syringes adapted to be coupled at their respective outlets to fluidly connect the syringes. The first syringe includes a plunger having a hollow plunger barrel and a distal end defining a lumen therethrough. The lumen is initially closed by a septum, which in one embodiment is an elastomeric stopper mounted over the end of the plunger. The mixing apparatus further includes a third syringe slidably disposed within the plunger barrel. The third syringe includes a hollow needle adapted to pierce the septum to allow fluid from the third syringe to be injected into fluid within the coupled first and second syringes.
Abstract:
A method of registering a plurality of Battery-Monitoring-Units (BMUs) in a battery pack with a Battery-Management-System (BMS), the method comprising: providing an indication to a user, wherein the indication prompts the user to register one of the BMUs with the BMS; the user performing an action on a communication-initiating mechanism on one of the BMUs, wherein the communication-initiating mechanism is configured to initiate the sending of a communication by the BMU to the BMS in response to the user performing the action; the BMU sending a communication to the BMS in response to the user performing the action on the communication-initiating mechanism; the BMS receiving the communication from the BMU; and the BMS registering the BMU in response to receiving the communication from the BMU.
Abstract:
A method or process enables the collection of data from mobile devices and mobile networks using filtering, compression, encryption, memory management, and power management technologies to collect mobile device metrics at the mobile device (client side), and then transmit these metrics from the mobile device to a server for processing by analytics software. The analytics processing may also occur directly on the mobile device. Policies are determined and configured at the processing server to drive and control the mobile device metrics captured, which may include but are not limited to, data usage (e.g. time of day, amount of data sent/received), voice usage (e.g. time of day, calls in/out of network, dropped calls, call duration), the location of the mobile device, cell patterns (e.g. problem cells, roaming), touch interactions, behavioral analysis (programs used, services uses), battery performance, CPU usage, memory usage, network usage (e.g. 2G, 3G, 3.5G, 4G, Wi-Fi, WiMAX), and the like.
Abstract:
A method for treating a diseased or damaged spinal disc having an inner nucleus pulposus and an outer annulus is provided comprises the steps of: providing access to the nucleus pulposus through the annulus; removing at least a portion of the nucleus pulposus to create an intradiscal space; determining the integrity of the annulus; and then sealably introducing under pressure a curable biomaterial through the annulus access directly into the intradiscal space. The step of determining the integrity of the annulus may be accomplished by introducing into the disc a fluid solution under a first pressure. The curable biomaterial may subsequently be introduced through the annulus directly into said intradiscal space at a second pressure that is increased or decreased from the first pressure as a function of the viscosity of the biomaterial relative to the fluid solution. In certain embodiments, a distraction force is applied to the disc space.
Abstract:
A method for treating a diseased or damaged spinal disc comprises the steps of: (a) providing access to the nucleus pulposus through the annulus; (b) removing at least a portion of the nucleus pulposus to create an intradiscal space; determining the size of the intradiscal space; and (c) sealably introducing under pressure a curable biomaterial through the annulus directly into the intradiscal space. The method may include the additional steps of applying a force to distract the opposing vertebral bodies about the intradiscal space and then removing the distraction force after the biomaterial has cured. The step of determining the size of the intradiscal space may be accomplished by expanding a compliant balloon within the intradiscal space using a contrast medium capable of visualization under fluoroscopy. The curable material is sealably introduced through a vented needle inserted through the opening. The curable biomaterial is introduced until a quantity of the material flows into the vent.
Abstract:
An apparatus for introducing a curable biomaterial into a spinal disc nucleus pulposus, comprises: an injection needle sized for introduction into the nucleus pulposus; a syringe operable to inject a curable biomaterial contained in the syringe under fluid pressure through the injection needle; and a valve coupled between the injection needle and the syringe. The valve is operable in an open position to permit passage of the biomaterial from the syringe into the needle under fluid pressure, and in a closed position to maintain the fluid pressure of the injected biomaterial within the nucleus. In certain embodiments, the needle has a relatively smooth outer surface and a substantially constant outer diameter over its length. An outer docking cannula may also be provided that is sized and configured for piercing through the disc annulus and for docking thereto. A kit of parts is provided that comprises: a cannula having a distal end and a proximal end, the distal end of the cannula adapted to be inserted through the disc annulus; an injection needle having a distal end and a proximal end, the distal end adapted to be inserted into the proximal end of the cannula and configured for relatively close sliding fit therewithin; and a syringe for containing a quantity of curable biomaterial, the syringe adapted to be coupled to the proximal end of the needle and to inject the biomaterial into the needle under pressure. The kit may further comprises a quantity of curable biomaterial that is selected to have upon curing strong adhesive properties such as a protein polymer.
Abstract:
A wet electrostatic precipitator includes flat discharge electrodes (14) of a grid-like construction that have some flexibility so that if sparking occurs between their freely suspended lower ends and the adjacent collector plates (12), the lower ends will tend to sway back and forth. Oscillation dampener devices (50) are suspended upon the lower ends of the electrodes and are comprised of a cylindrical mass or body portion (82) rigidly connected to a rail portion (80) by arms (84). Each dampener is pendulously suspended upon a cross member (56) of the frame of the associated electrode so that its rail portion rubs against the cross member with enough friction to rapidly inhibit the swaying of the lower end of the electrode under the influence of any sparking.
Abstract:
A method of handling a fault in a battery pack, the method comprising: a battery module supplying a voltage to a high-voltage circuit; a battery management system transmitting a heartbeat signal to the battery module via a fault bus; the battery module preventing the heartbeat signal from being transmitted back to the battery management system in response to the battery module detecting a critical condition; and the battery management system shutting off the supply of voltage from the battery module to the high-voltage circuit in response to the battery module preventing the heartbeat signal from being transmitted back to the battery management system. The battery module transmits battery data to the battery management system via a communication bus, which is distinct from the fault bus, and the battery management system transmits one or more commands to the battery module via the communication bus.
Abstract:
An assembly for sealably injecting a fluent material into an intradiscal space accessed through an opening in the annulus of a spinal disc comprises a cannula having a passageway for injecting the fluent material therethrough into the intradiscal space, a seal having a sealing surface for sealing engagement with the outer surface of the disc annulus and defining a central opening for, and an articulating joint defined between the central opening of the seal and the cannula configured to permit relative articulation between the components. The assembly may further comprise an anchor element extending through the central opening of the seal, the anchor element including an elongated threaded body sized for threaded engagement within the opening in the disc annulus and having a head configured to engage a distal end of the cannula.
Abstract:
A method of registering a plurality of Battery-Monitoring-Units (BMUs) in a battery pack with a Battery-Management-System (BMS), the method comprising: providing an indication to a user, wherein the indication prompts the user to register one of the BMUs with the BMS; the user performing an action on a communication-initiating mechanism on one of the BMUs, wherein the communication-initiating mechanism is configured to initiate the sending of a communication by the BMU to the BMS in response to the user performing the action; the BMU sending a communication to the BMS in response to the user performing the action on the communication-initiating mechanism; the BMS receiving the communication from the BMU; and the BMS registering the BMU in response to receiving the communication from the BMU.