Abstract:
A totem-pole transistor circuit in the output stage of a logic device includes, in the base circuit of the current sink transistor, a discharge transistor responsive to each transition of a circuit input signal for discharging the parasitic base capacitance of the sink transistor, and a circuit for delaying the delivery of the input signal to the discharge transistor. The delay results in postponing the transition of the discharge transistor from one operational state to another. This causes the transitions of the discharge transistor to lag the transitions of the totem-pole pair which occur simultaneously with input signal changes. Thus, the discharge transistor is held on for a period of time sufficient to discharge the parasitic capacitance when the current-sink transistor turns off. This speeds up the turn-off of the sink transistor. After the period elapses, the discharge transistor turns off. Then, when base current is supplied to the current-sink transistor to turn it on, the discharge transistor is held off for an amount of time during which all of the base current is provided to the current-sink transistor, causing it to be quickly switched on. Then the discharge transistor is turned on, permitting it to discharge the parasitic capacitance of the current-sink transistor at the next input signal transition.
Abstract:
An integrated circuit controller for a power converter to be coupled to a distribution network is disclosed. An example integrated circuit controller according to aspects of the present invention includes a switching control circuit that outputs a drive signal to control switching of a switch to regulate an output of the power converter. The integrated circuit controller also includes a cable drop compensator that outputs a compensated reference voltage signal to the switching control circuit in response to a switching signal. The switching signal is responsive to the drive signal. The compensated reference voltage signal is representative of a voltage value that is responsive to a distribution voltage across the distribution network and a load voltage across a load to be coupled to the distribution network. The switching of the switch is responsive to the compensated reference voltage signal and a feedback signal.
Abstract:
An example power converter includes an energy transfer element, a switch, and a control circuit. The control circuit includes a drive signal generator and an unregulated dormant mode control circuit. The unregulated dormant mode control circuit renders dormant the drive signal generator thereby ceasing the regulation of the output by the drive signal generator when the energy requirement of the one or more loads falls below a threshold for more than a first period of time. The drive signal generator is unresponsive to changes in the energy requirements of the one or more loads when dormant. The unregulated dormant mode control circuit powers up the drive signal generator after a second period of time has elapsed, such that the drive signal generator is again responsive to changes in the energy requirement of the one or more loads after the second period of time has elapsed.
Abstract:
A power supply includes an energy transfer element coupled between an input and an output. A switch is coupled to an input of the energy transfer element. A threshold detection circuit includes in an integrated circuit coupled to measure a signal from a resistive external circuit coupled between fourth and first external terminals of the integrated circuit during an initialization period after the fourth external terminal has been charged to a supply threshold value. A regulator circuit is coupled between second and fourth external terminals of the integrated circuit. The regulator circuit is coupled to charge the fourth external terminal to the supply threshold value during the initialization period. A selection circuit is coupled to the threshold detection circuit to select a parameter/mode of the integrated circuit in response to the measured signal.
Abstract:
An example controller for a power converter includes a switching control coupled to switch a power switch of the power converter to control a transfer of energy from an input of the power converter to an output of the power converter. A sensor is coupled to sample a single terminal of the controller during a portion of an off time of the power switch to output a signal representative of an output voltage of the power converter. The sensor is further coupled to sample the single terminal during a portion of an on time of the power switch to output a signal representative of a line input voltage of the power converter. The switching control is responsive to the sensor.
Abstract:
A controller for regulating an output of a power supply includes a logic block and an oscillator. The logic block generates the drive signal to control switching of a power switch in response to a clock signal. The clock signal has a frequency that decreases responsive to a time period of the drive signal, where a decrease in the time period of the drive signal represents an increase in an input voltage of the power supply. The oscillator is coupled to generate the clock signal in response to a waveform having an amplitude swing. The oscillator alters the waveform in response to the time period of the drive signal.
Abstract:
A controller for use in a power converter includes a control circuit to be coupled to a current controller coupled to an energy transfer element. A first, second or third current is enabled in the current controller in response to the control circuit. The first current is substantially zero, the second current is greater than the third current, and the third current is greater than the first current. The third current only partially discharges a capacitance coupled to a terminal coupled between the energy transfer element and the current controller. A first feedback circuit coupled to the control circuit generates a first feedback signal after a full discharge pulse of current through the current controller. A second feedback circuit coupled to the control circuit generates a second feedback signal after a partial discharge pulse of current through the current controller.
Abstract:
In one aspect, a power supply regulator includes a feedback terminal, a node, a control circuit, a first current source, and a second current source. The node is coupled to the feedback terminal to provide a feedback state signal in response to a feedback current through the feedback terminal. The feedback state signal has feedback states that represent an output of the power supply. The control circuit is to be coupled to a power switch and to receive the feedback state signal to regulate the output of the power supply. The first current source is coupled to the node to provide a first current to the node. The second current source is coupled to the node to selectively remove a second current from the node to modulate the feedback current and to alter the feedback state of the feedback state signal.
Abstract:
An example controller includes a fault detector and a control. The fault detector is to be coupled to a feedback circuit of a power converter to detect a fault condition in the power converter in response to an input voltage of the power converter. The control is coupled to the fault detector and is to be coupled to control the switching of a power switch to regulate an output of the power converter. The control is coupled to inhibit the switching of the power switch in response to the fault detector detecting the fault condition during the switching of the power switch.
Abstract:
A controller for use in a power converter to detect changes in output voltage. An example controller includes a drive circuit to generate a switching signal. The switching signal is coupled to be received by a power switch to be coupled to an energy transfer element and an input of the power converter to control a transfer of energy from the input of the power converter to an output of the power converter. An output voltage sensor is coupled to the drive circuit and coupled to receive a feedback signal representative of the output of the power converter. The output voltage sensor includes first and second pulse sampler circuits. The first pulse sampler circuit is coupled to capture a first peak voltage representative of a second peak of a ringing voltage of the feedback signal at a first time in the feedback signal. The second pulse sampler circuit is coupled to capture a second peak voltage representative of the second peak of the ringing voltage of the feedback signal at a second time in the feedback signal. The output voltage sensor is coupled to output a change signal to the drive circuit in response to the first and second peak voltages.