Abstract:
An error detection circuit having an output transistor of one conductivity type and a sense transistor and error detector transistor of an opposite conductivity type. An input voltage is provided at the collector of the output transistor and an output voltage is taken from the emitter of the output transistor. An emitter of the sense transistor is connected to the input voltage and the collector of the sense transistor is connected to the base of the output transistor. An emitter of the error detector transistor is connected to the collector of the sense transistor and a base of the error detector transistor is connected to the base of the sense transistor. The error detector transistor conducts when the sense transistor saturates indicating that the input voltage and output voltage have come within a predetermined voltage of one another.
Abstract:
A totem-pole transistor circuit in the output stage of a logic device includes, in the base circuit of the current sink transistor, a discharge transistor responsive to each transition of a circuit input signal for discharging the parasitic base capacitance of the sink transistor, and a circuit for delaying the delivery of the input signal to the discharge transistor. The delay results in postponing the transition of the discharge transistor from one operational state to another. This causes the transitions of the discharge transistor to lag the transitions of the totem-pole pair which occur simultaneously with input signal changes. Thus, the discharge transistor is held on for a period of time sufficient to discharge the parasitic capacitance when the current-sink transistor turns off. This speeds up the turn-off of the sink transistor. After the period elapses, the discharge transistor turns off. Then, when base current is supplied to the current-sink transistor to turn it on, the discharge transistor is held off for an amount of time during which all of the base current is provided to the current-sink transistor, causing it to be quickly switched on. Then the discharge transistor is turned on, permitting it to discharge the parasitic capacitance of the current-sink transistor at the next input signal transition.
Abstract:
An additional p-n junction diode, having a forward bias voltage smaller than a forward bias voltage between the base and emitter of a first-stage specific transistor of 3-stage Darlington connected npn transistors, is electrically connected in parallel between a p-type base layer and an n-type collector layer of the specific transistor. The polarities of the p-type and n-type layers of the diode are respectively the same as those of the parallel-connected p-type base and n-type collector layers of the specific transistor.
Abstract:
A driving circuit uses an output transistor and a driving transformer with a secondary coil being connected to the base of the output transistor. In order to get a high speed switching circuit without thermal runaway, the storage period of the output transistor is detected. A signal supplied to a primary coil of the driving transformer, for example, a driving pulse, is controlled in response to the detected value of the storage period. By minimizing the value of the storage period, it becomes possible to minimize a fall time of the output transistor, so that a stability of the driving circuit can be maintained.
Abstract:
A saturation condition regulator system for a power transistor which achieves the regulation objectives of a Baker clamp but without dumping excess base drive current into the transistor output circuit. The base drive current of the transistor is sensed and used through an active feedback circuit to produce an error signal which modulates the base drive current through a linearly operating FET. The collector base voltage of the power transistor is independently monitored to develop a second error signal which is also used to regulate base drive current. The current-sensitive circuit operates as a limiter. In addition, a fail-safe timing circuit is disclosed which automatically resets to a turn OFF condition in the event the transistor does not turn ON within a predetermined time after the input signal transition.
Abstract:
A semiconductor integrated circuit device including: a first transistor whose base receives an input signal, and whose collector is connected to a high power supply voltage; a second transistor whose base is conducted to the emitter of said first transistor and whose emitter is connected to a low power supply voltage; a third transistor whose base is connected to the collector of said first transistor, whose collector is connected to said high power supply voltage, and whose emitter is connected to the collector of said second transistor directly or via a load element; and a fourth transistor whose base is connected to the emitter of said third transistor, whose emitter is connected to said low power supply voltage, and from whose collector an output signal of said semiconductor integrated circuit device is taken out.
Abstract:
A reverse current transmitted through an initially forward biased step-recovery diode causes the step-recovery diode to switch from the forward biased state to a reverse biased state, thereby developing an abruptly rising reverse bias voltage across the step-recovery diode. The abruptly rising reverse bias voltage is applied across a series combination of a capacitor and a laser diode, connected in parallel with the step-recovery diode to force a short, abrupt forward current pulse through the laser diode, thereby causing the laser diode to emit a short optical pulse.
Abstract:
A transistor drive circuit includes a driver transistor and a power switching transistor connected in a Darlington configuration which receives turn-on and turn-off signals from a drive transformer. A capacitor is provided for connection between the driver transistor base and the switching transistor emitter during a turn-off period such that the voltage on the capacitor hastens turn-off of the driver transistor and the switching transistor. A diode connected between the emitter and the base of the driver transistor provides for continuing current flow from the capacitor following turn-off of the driver transistor but prior to turn-off of the switching transistor. After the switching transistor has turned off, the capacitor is recharged prior to the presence of a turn-on signal from the drive transformer.
Abstract:
A high-speed operation, low-power consumption gate circuit structure comprises a combination of complementary field-effect-transistors and bipolar transistors and discharge means for discharging accumulated charges from these transistors when the field-effect-transistors and bipolar transistors are turned off.
Abstract:
In a base drive circuit for a high power transistor, an external signal is applied to the circuit by an optical coupler. In response to the external signal, the circuit provides a positive current to the high power transistor in order turn it on. The positive constant current is characterized by an initial spike that prevents any localized hot spots from developing in the high power transistor and thereafter the positive current becomes constant. The circuit also provides a constant negative current when the external signal is removed, thereby quickly turning off the high power transistor. The optical coupler and a time delay device provide the circuit with high noise immunity.