摘要:
A semiconductor device includes a silicon substrate having a first major surface and a second major surface opposite to the first major surface, a drift layer and a collector layer formed in sequence in the silicon substrate from the first major surface, and an aluminum silicon film formed on the second major surface. The drift layer is of a first conductivity type, and is surrounded by a semiconductor layer of a second conductivity type including the collector layer.
摘要:
Some embodiments of the present invention relate to a semiconductor device and a method of manufacturing a semiconductor device capable of preventing the deterioration of electrical characteristics. A p-type collector region is provided on a surface layer of a backside surface of an n-type drift region. A p+-type isolation layer for obtaining reverse blocking capability is provided at the end of an element. In addition, a concave portion is provided so as to extend from the backside surface of the n-type drift region to the p+-type isolation layer. A p-type region is provided and is electrically connected to the p+-type isolation layer. The p+-type isolation layer is provided so as to include a cleavage plane having the boundary between the bottom and the side wall of the concave portion as one side.
摘要:
A trench IGBT is disclosed which meets the specifications for turn-on losses and radiation noise. It includes a p-type base layer divided into different p-type base regions by trenches. N-type source regions are formed in only some of the p-type base regions. There is a gate runner in the active region of the trench IGBT. Contact holes formed in the vicinities of the terminal ends of the trenches and on both sides of the gate runner electrically connect some of the p-type base regions that do not include source regions to an emitter electrode. The number N1 of p-type base regions that are connected electrically to the emitter electrode and the number N2 of p-type base regions that are insulated from the emitter electrode are related with each other by the expression 25≦{N1/(N1+N2)}×100≦75.
摘要:
A vertical and trench type insulated gate MOS semiconductor device is provided in which the surfaces of p-type channel regions and the surfaces of portions of an n-type semiconductor substrate alternate in the longitudinal direction of the trench between the trenches arranged in parallel, and an n+-type emitter region selectively formed on the surface of the p-type channel region is wide by the side of the trench and becomes narrow toward the center point between the trenches. This enables the device to achieve low on-resistance and enhanced turn-off capability.
摘要:
A power semiconductor device is provided having a field plate that employs a thick metal film in an edge termination structure and which permits edge termination structure width reduction even with large side etching or etching variation, which exhibits superior long-term forward blocking voltage capability reliability, and which allows minimal forward blocking voltage capability variation. The edge termination structure has multiple ring-like p-type guard rings, a first insulating film covering the guard rings, and ring-like field plates, provided via the first insulating film atop the guard rings. The field plates have a polysilicon film and a thicker metal film. The polysilicon film is provided on a first guard ring via first insulating film, and a dual field plate made of the polysilicon film and metal film is provided on a second guard ring. The dual field plate is stacked via a second insulating film. The first and second guard rings alternate.
摘要:
A manufacturing method is disclosed which ensures strength of a wafer and improves device performance. A thermal diffusion layer is formed from a front surface of a wafer. A tapered groove which reaches the thermal diffusion layer is formed from a back surface by anisotropic etching with alkaline solution. In-groove thermal diffusion layer is formed on side wall surfaces of the groove. A separation layer of a reverse blocking IGBT is configured of the thermal diffusion layer and the in-groove diffusion layer. The thermal diffusion layer is formed shallowly by forming the in-groove diffusion layer. It is possible to considerably reduce thermal diffusion time. By carrying out an ion implantation forming the in-groove diffusion layer and an ion implantation forming a collector layer separately, it is possible to select an optimum value for tradeoff between turn-on voltage and switching loss, while ensuring reverse blocking voltage of the reverse blocking IGBT.
摘要:
A semiconductor device is disclosed which includes active section 100, edge termination section 110 having a voltage blocking structure and disposed around active section 100, and separation section 120 having a device separation structure and disposed around edge termination section 110. A surface device structure is formed on the first major surface of active section 100, trench 23 is formed in separation section 120 from the second major surface side, and p+-type separation region 24 is formed on the side wall of trench 23 such that p+-type separation region 24 is in contact with p-type channel stopper region 21 formed in the surface portion on the first major surface side and p-type collector layer 9 formed in the surface portion on the second major surface side. The semiconductor device and the method for manufacturing the semiconductor device according to the invention facilitate preventing the reverse blocking voltage from decreasing and shorten the manufacturing time of the semiconductor device.