摘要:
A surface acoustic wave device includes a hard layer comprising diamond or a diamond-like carbon film, and a piezoelectric layer formed on the hard layer. It further includes a paired interdigital transducer and grounding electrode, which perform an electro-mechanical conversion, with the piezoelectric layer arranged therebetween. Then, the feature of the present invention is to form the grounding electrode of a conductive oxide. It is preferred that the conductive oxide is formed by doping an impurity into a piezoelectric material of ZnO. Therefore, the adhesion between the piezoelectric layer and the hard layer, and the grounding electrodes is increased, so that the device yield is enhanced, and a high electromechanical coupling coefficient can be achieved in a high frequency range.
摘要:
A diamond substrate having a smooth surface, including a polycrystalline diamond film having a surface with a pit, and an insulating material other than diamond, which occupies the pit.
摘要:
A surface acoustic wave element has a diamond layer, a piezoelectric thin film formed on the diamond layer, and a pair of electrodes for generating a surface acoustic wave having a specific wavelength and extracting the surface acoustic wave, wherein at least one electrode is a copper electrode epitaxially grown on the surface of the diamond layer. To manufacture this surface acoustic wave element, after the diamond layer is formed on a substrate by epitaxial growth, the copper electrodes each having the predetermined shape are formed on the surface of the diamond layer by epitaxial growth. Since the copper electrodes formed on the diamond layer consist of high-quality single crystal copper, resistances to electromigration and stress migrations can be increased. As a result, there is provided an excellent surface acoustic wave element free from electrical defects caused by degradation and failure of the copper electrodes or free from degradation of the electrical characteristics.
摘要:
A surface acoustic wave element includes a hard layer containing a composition component essentially consisting of at least one of diamond and a diamond-like carbon film, a piezoelectric layer formed on the hard layer, a silicon dioxide (SiO.sub.2) layer formed on the piezoelectric layer, and electrodes combined with the piezoelectric layer to perform electro-mechanical conversion. The surface acoustic wave element has a larger electro-mechanical coupling coefficient and a higher surface acoustic wave propagation velocity than does a conventional surface acoustic wave element having no silicon dioxide layer, thereby obtaining a surface acoustic wave element that can operate in a high-frequency range. In particular, the electro-mechanical coupling coefficient is increased. The SiO.sub.2 layer is an electric insulator and rarely reacts with moisture or acids. The SiO.sub.2 layer protects the piezoelectric layer and the electrodes from effects of the external environment, thereby providing a surface acoustic wave element having good high-frequency characteristics and a high resistance to adverse environments.
摘要:
A surface acoustic wave element has a diamond layer, a piezoelectric thin film formed on the diamond layer, and a pair of electrodes for generating a surface acoustic wave having a specific wavelength and extracting the surface acoustic wave, wherein at least one electrode is a copper electrode epitaxially grown on the surface of the diamond layer. To manufacture this surface acoustic wave element, after the diamond layer is formed on a substrate by epitaxial growth, the copper electrodes each having the predetermined shape are formed on the surface of the diamond layer by epitaxial growth. In the surface acoustic wave element having the above structure, since the copper electrodes formed on the diamond layer consist of high-quality singlecrystal copper, resistances to electromigration and stress migrations can be increased. As a result, there is provided an excellent surface acoustic wave element free from electrical defects caused by degradation and failure of the copper electrodes or free from degradation of the electrical characteristics.
摘要:
The present invention directed to a SAW device comprising a diamond layer and an LiTaO.sub.3 layer, which can be operated at the frequency of 3 GHz or higher, with superior durability and less energy loss. The SAW device for 1st mode surface acoustic wave of a wavelength .lambda. (.mu.m) according to the present invention comprises: a diamond layer, an interdigital transducer formed onto the diamond layer, and a polycrystalline C-axis-oriented LiTaO.sub.3 layer formed over the interdigital transducer; wherein the SAW device satisfies a relationship of 0.4.ltoreq.kh.sub.1 .ltoreq.1.2, where a parameter kh.sub.1 is defined as kh.sub.1 =2.pi.(t.sub.1 /.lambda.), and t.sub.1 (.mu.m) is the thickness of the LiTaO.sub.3 layer.
摘要:
A diamond base material for surface acoustic wave device, which includes: a low-resistivity base material, and a high-resistivity diamond layer having a thickness of 5-50 .mu.m disposed on the low-resistivity base material.
摘要:
A diamond base material for surface acoustic wave device, which includes: a low-resistivity base material, and a high-resistivity diamond layer having a thickness of 5-50 .mu.m disposed on the low-resistivity base material.
摘要:
A SAW device which includes at least, diamond, an LiNbO.sub.3 layer disposed on the diamond, and an IDT provided so as to contact the LiNbO.sub.3 layer; and utilizes SAW of an "n-th" mode (n=0, 1 or 2) having a wavelength of .lambda..sub.n (.mu.m), wherein a parameter of kh.sub.1 =2.pi.(t.sub.1 /.lambda..sub.n) is in a specific range provided that the thickness of the LiNbO.sub.3 layer is denoted by t.sub.1 (.mu.m).
摘要:
An orientational material including: diamond, and a ZnO film disposed on a surface of (111) orientational diamond provided by the diamond. Such an orientational material may suitably be used as a component for fabricating a surface acoustic wave device utilizing diamond.