摘要:
The present invention includes uranium-bearing ceramic phase electrodes and electrolysis apparatus and electrolysis methods featuring same, including methods of metal production and the like by the electrolytic reduction of oxides or salts of the respective metals. More particularly, the invention relates to an inert type electrode composition, and methods for fabricating electrode compositions, useful in the electrolytic production of such metals. The present invention also includes an inert-type electrode composition, and methods for fabricating electrode compositions, used in processes for generating energy from fossil fuels.
摘要:
The present invention includes uranium-bearing ceramic phase electrodes and electrolysis apparatus and electrolysis methods featuring same, including methods of metal production and the like by the electrolytic reduction of oxides or salts of the respective metals. More particularly, the invention relates to an inert type electrode composition, and methods for fabricating electrode compositions, useful in the electrolytic production of such metals. The present invention also includes an inert-type electrode composition, and methods for fabricating electrode compositions, used in processes for generating energy from fossil fuels.
摘要:
Methods of converting shaped templates into shaped metal-containing components, allowing for the production of freestanding, porous metal-containing replicas whose shapes and microstructures are derived from a shaped template, and partially or fully converting the shaped templates to produce metal-containing coatings on an underlying shaped template are described herein. Such coatings and replicas can be applied in a variety of fields including, but not limited to, catalysis, energy storage and conversion, and various structural or refractory materials and structural or refractory composite materials.
摘要:
The present invention is focused on a revolutionary, low-cost (highly-scaleable) approach for the mass production of three-dimensional microcomponents: the biological reproduction of naturally-derived, biocatalytically-derived, and/or genetically-tailored three-dimensional microtemplates (e.g., frustules of diatoms, microskeletons of radiolarians, shells of mollusks) with desired dimensional features, followed by reactive conversion of such microtemplates into microcomponents with desired compositions that differ from the starting microtemplate and with dimensional features that are similar to those of the starting microtemplate. Because the shapes of such microcomponents may be tailored through genetic engineering of the shapes of the microtemplates, such microcomposites are considered to be Genetically-Engineered Materials (GEMs).
摘要:
A method of preparing a laminated ceramic. The method includes preparing a precursor having at least one noble metal element component and at least two non-noble metal elements. The precursor is exposed to a first environment to form an oxidized zone having a first concentration of a primary ceramic phase containing the non-noble metal elements. The precursor is next exposed to a second environment to form a second oxidized zone having a second concentration of the primary ceramic phase, the second concentration being less than the first concentration. The precursor is repeatedly exposed to each environment to form a plurality of zones with the first concentration of the primary ceramic phase separated by zones with the second concentration of the ceramic.
摘要:
The purpose of the present invention is to describe a novel approach for converting 3-dimensional, synthetic micro- and nano-templates into different materials with a retention of shape/dimensions and morphological features. The ultimate objective of this approach is to mass-produce micro- and nano-templates of tailored shapes through the use of synthetic or man-made micropreforms, and then chemical conversion of such templates by controlled chemical reactions into near net-shaped, micro- and nano-components of desired compositions. The basic idea of this invention is to obtain a synthetic microtemplate with a desired shape and with desired surface features, and then to convert the microtemplate into a different material through the use of chemical reactions.
摘要:
The invention provides a process for production of silver-containing precursor alloys to oxide superconductors, said alloys having reduced amounts of intermetallics. Powders containing metallic elemental components of an oxide superconductor are high energy milled for a predetermined amount of time to increase homogeneity of the mixed metallic elemental components of the oxide superconductor. Silver is then high energy milled into the metallic components. The mixed silver and metallic elemental components of the oxide superconductor are compacted for the silver-containing superconductor precursor. The compacted powder is preferably hot worked at a temperature of at least 50% of the precursor alloy's melting temperature in degrees Kelvin.
摘要:
The present invention is focused on a revolutionary, low-cost (highly-scaleable) approach for the mass production of three-dimensional microcomponents: the biological reproduction of naturally-derived, biocatalytically-derived, and/or genetically-tailored three-dimensional microtemplates (e.g., frustules of diatoms, microskeletons of radiolarians, shells of mollusks) with desired dimensional features, followed by reactive conversion of such microtemplates into microcomponents with desired compositions that differ from the starting microtemplate and with dimensional features that are similar to those of the starting microtemplate. Because the shapes of such microcomponents may be tailored through genetic engineering of the shapes of the microtemplates, such microcomposites are considered to be Genetically-Engineered Materials (GEMs).
摘要:
A composite for preparation of an oxide superconductor includes a primary alloy phase of constituent elements of a desired oxide superconductor; and a secondary phase comprising copper, the secondary phase supported by the primary alloy phase. The composite may additionally include a matrix material for supporting the primary alloy phase and second phase disposed therein. The composite is oxidized to form an oxide superconductor composite.
摘要:
A composite for preparation of an oxide superconductor includes a primary alloy phase of constituent elements of a desired oxide superconductor; and a secondary phase comprising copper, the secondary phase supported by the primary alloy phase. The composite may additionally include a matrix material for supporting the primary alloy phase and second phase disposed therein. The composite is oxidized to form an oxide superconductor composite.