摘要:
Methods of converting shaped templates into shaped metal-containing components, allowing for the production of freestanding, porous metal-containing replicas whose shapes and microstructures are derived from a shaped template, and partially or fully converting the shaped templates to produce metal-containing coatings on an underlying shaped template are described herein. Such coatings and replicas can be applied in a variety of fields including, but not limited to, catalysis, energy storage and conversion, and various structural or refractory materials and structural or refractory composite materials.
摘要:
The present invention is focused on a revolutionary, low-cost (highly-scaleable) approach for the mass production of three-dimensional microcomponents: the biological reproduction of naturally-derived, biocatalytically-derived, and/or genetically-tailored three-dimensional microtemplates (e.g., frustules of diatoms, microskeletons of radiolarians, shells of mollusks) with desired dimensional features, followed by reactive conversion of such microtemplates into microcomponents with desired compositions that differ from the starting microtemplate and with dimensional features that are similar to those of the starting microtemplate. Because the shapes of such microcomponents may be tailored through genetic engineering of the shapes of the microtemplates, such microcomposites are considered to be Genetically-Engineered Materials (GEMs).
摘要:
A method of preparing a laminated ceramic. The method includes preparing a precursor having at least one noble metal element component and at least two non-noble metal elements. The precursor is exposed to a first environment to form an oxidized zone having a first concentration of a primary ceramic phase containing the non-noble metal elements. The precursor is next exposed to a second environment to form a second oxidized zone having a second concentration of the primary ceramic phase, the second concentration being less than the first concentration. The precursor is repeatedly exposed to each environment to form a plurality of zones with the first concentration of the primary ceramic phase separated by zones with the second concentration of the ceramic.
摘要:
The purpose of the present invention is to describe a novel approach for converting 3-dimensional, synthetic micro- and nano-templates into different materials with a retention of shape/dimensions and morphological features. The ultimate objective of this approach is to mass-produce micro- and nano-templates of tailored shapes through the use of synthetic or man-made micropreforms, and then chemical conversion of such templates by controlled chemical reactions into near net-shaped, micro- and nano-components of desired compositions. The basic idea of this invention is to obtain a synthetic microtemplate with a desired shape and with desired surface features, and then to convert the microtemplate into a different material through the use of chemical reactions.
摘要:
The present invention includes uranium-bearing ceramic phase electrodes and electrolysis apparatus and electrolysis methods featuring same, including methods of metal production and the like by the electrolytic reduction of oxides or salts of the respective metals. More particularly, the invention relates to an inert type electrode composition, and methods for fabricating electrode compositions, useful in the electrolytic production of such metals. The present invention also includes an inert-type electrode composition, and methods for fabricating electrode compositions, used in processes for generating energy from fossil fuels.
摘要:
The invention provides a process for production of silver-containing precursor alloys to oxide superconductors, said alloys having reduced amounts of intermetallics. Powders containing metallic elemental components of an oxide superconductor are high energy milled for a predetermined amount of time to increase homogeneity of the mixed metallic elemental components of the oxide superconductor. Silver is then high energy milled into the metallic components. The mixed silver and metallic elemental components of the oxide superconductor are compacted for the silver-containing superconductor precursor. The compacted powder is preferably hot worked at a temperature of at least 50% of the precursor alloy's melting temperature in degrees Kelvin.
摘要:
Methods of converting shaped templates into shaped metal-containing components, allowing for the production of freestanding, porous metal-containing replicas whose shapes and microstructures are derived from a shaped template, and partially or fully converting the shaped templates to produce metal-containing coatings on an underlying shaped template are described herein. Such coatings and replicas can be applied in a variety of fields including, but not limited to, catalysis, energy storage and conversion, and various structural or refractory materials and structural or refractory composite materials.
摘要:
The present invention is a method for fabricating shaped monolithic ceramics and ceramic composites, and the ceramics and composites made thereby. The method of the present invention includes three basic steps: (1) Synthesis or other acquisition of a porous preform with an appropriate composition, pore fraction, and overall shape is prepared or obtained. The pore fraction of the preform is tailored so that the reaction-induced increase in solid volume can compensate partially or completely for such porosity. It will be understood that the porous preform need only be sufficiently dimensionally stable to resist the capillary action of the infiltrated liquid reactant; (2) Infiltration: The porous preform is infiltrated with a liquid reactant; and (3) Reaction: The liquid reactant is allowed to react partially or completely with the solid preform to produce a dense, shaped body containing desired ceramic phase(s). The reaction in step (3) above is a displacement reaction of the following general type between a liquid species, M(l), and a solid preform comprising the compound, NBXC(s): AM(l)+NBXC(s)=AMXC/A(s)+BN(l/g) where MXC/A(s) is a solid reaction product (X is a metalloid element, such as, for example, oxygen, nitrogen, sulfur, etc.) and N(l/g) is a fluid (liquid or gas) reaction product. A, B and C are molar coefficients.
摘要:
This invention relates to methods and apparatus useful in the ceramics industry. More specifically, this invention relates to the fabrication of high melting, wear-resistant ceramics and ceramic composites at low temperatures. The method involves reacting (1) a fluid formed from melting a metal alloy, comprising at least one reactive metal and at least one non-reactive metal, and having a melting temperature substantially below the product material melting point, typically below about 1500 C., with (2) a rigid, porous material. The reaction should occur for a sufficient time to allow the liquid to infiltrate the porous material and allow the active metal(s) to react with the porous material so as to form a ceramic or ceramic composite having a melting temperature substantially higher than 1500 C.
摘要:
The process of the present invention comprises a method for fabricating shaped monolithic ceramics and ceramic composites through displacive compensation of porosity, and ceramics and composites made thereby. The method of the present invention includes three basic steps: 1) Synthesis or other acquisition of a porous preform: A porous preform with an appropriate composition, pore fraction, and overall shape is prepared or obtained. The pore fraction of the preform is tailored so that the reaction-induced increase in solid volume can compensate partially or completely for such porosity. It will be understood that the porous preform need only be sufficiently dimensionally stable to resist the capillary action of the infiltrated liquid reactant; 2) Infiltration: The porous preform is infiltrated with a liquid reactant; and 3) Reaction: The liquid reactant is allowed to react partially or completely with the solid preform to produce a dense, shaped body containing desired ceramic phase(s). The reaction in step 3) above is a displacement reaction of the following general type between a liquid species, M(l), and a solid preform comprising the compound, NBXC(s): AM(l)+NBXC(s)=AMXC/A(s)+BN(l/g)(2) where MXC/A(s) is a solid reaction product (X is a metalloid element, such as, for example, oxygen, nitrogen, sulfur, etc.) and N(l/g) is a fluid (liquid or gas) reaction product. A, B and C are molar coefficients.