摘要:
Systems and methods provide a parameterized scheduling system that incorporates end-user application awareness and can be used with scheduling groups that contain data streams from heterogeneous applications. Individual data queues within a scheduling group can be created based on application class, specific application, individual data streams or some combination thereof. Application information and Application Factors (AF) are used to modify scheduler parameters such as weights and credits to differentiate between data streams assigned to a scheduling group. Dynamic AF settings may adjust relative importance of user applications to maximize user Quality of Experience (QoE) in response to recurring network patterns, one-time events, application characteristics, protocol characteristics, device characteristics, service level agreements, or combinations thereof. Scheduling parameters may be dynamic and incorporate the notions of “duration neglect” and “recency effect” in an end-user's perception of video quality in order to optimally manage video traffic during periods of congestion.
摘要:
Systems and methods provide a parameterized scheduling system that incorporates end-user application awareness and can be used with scheduling groups that contain data streams from heterogeneous applications. Data packets are analyzed at multiple protocol levels to detect characteristics associated with communicating the packets. The data packets are filtered so that detecting the characteristics is efficiently performed. The detected characteristics can be used for scheduling transmission of the packets. The detected characteristics can be used to dynamically change scheduling parameters. The dynamic scheduling parameters can maximize user Quality of Experience (QoE) in response to recurring network patterns, one-time events, application characteristics, protocol characteristics, device characteristics, service level agreements, or combinations thereof. Scheduling parameters may also incorporate notions of “duration neglect” and “recency effect” in an end-user's perception of video quality in order to manage video traffic during periods of congestion.
摘要:
Systems and methods provide a parameterized scheduling system that incorporates congestion detection and end-user application awareness and can be used with scheduling groups that contain data streams from heterogeneous applications. Congestion can be detected at multiple domains. Congestions can be detected using demand for communications, measure of resource usage in the communication device, or performance of the communication device. Congestions can also be detected using measures of protocol delay. The detected information can be used for scheduling transmission of the packets. Quality of Experience (QoE) for users can be maximized by efficient control responses to detected congestion.
摘要:
Systems and methods provide a parameterized scheduling system that incorporates end-user application awareness and can be used with scheduling groups that contain data streams from heterogeneous applications. Individual data queues within a scheduling group can be created based on application class, specific application, individual data streams or some combination thereof. Application information and Application Factors (AF) are used to modify scheduler parameters such as weights and credits to differentiate between data streams assigned to a scheduling group. Dynamic AF settings may adjust relative importance of user applications to maximize user Quality of Experience (QoE) in response to recurring network patterns, one-time events, application characteristics, protocol characteristics, device characteristics, service level agreements, or combinations thereof. Scheduling parameters may be dynamic and incorporate the notions of “duration neglect” and “recency effect” in an end-user's perception of video quality in order to optimally manage video traffic during periods of congestion.
摘要:
A communication station, such as a base station or access point, has multiple backhaul options and distributes backhaul data between the available backhaul options. The communication station includes a transceiver for transmitting and receiving data with user equipments, multiple backhaul interface modules, and a backhaul distribution module arranged for monitoring demand for backhaul bandwidth and distributing data over the backhauls based on the demand for backhaul bandwidth. Additional modules for user data and control plane processing may be included with the user/control distinction used in distributing data over the backhauls. The backhaul options may include a preferred backhaul and an alternate backhaul. Distributing data over the backhauls may be based, for example, on applications associated with the data, financial cost, delay, robustness, computational resources, and/or additional security associated with using a particular backhaul.
摘要:
A communication station, such as a base station or access point, has multiple backhaul options and distributes backhaul data between the available backhaul options. The communication station includes a transceiver for transmitting and receiving data with user equipments, multiple backhaul interface modules, and a backhaul distribution module arranged for monitoring demand for backhaul bandwidth and distributing data over the backhauls based on the demand for backhaul bandwidth. Additional modules for user data and control plane processing may be included with the user/control distinction used in distributing data over the backhauls. The backhaul options may include a preferred backhaul and an alternate backhaul. Distributing data over the backhauls may be based, for example, on applications associated with the data, financial cost, delay, robustness, computational resources, and/or additional security associated with using a particular backhaul.
摘要:
A communication system and method are disclosed for transmitting packets of information in at least one first format over a communications link that utilizes packets of information in a second format. In certain embodiments, the packets of information in a first format are converted to packets of information in the second format prior to transmission via the communications link by packing and fragmenting the information in the first format in a coordinated manner. Embodiments may also utilize packing subheaders and fragmentation control bits in the packing and fragmentation processes.
摘要:
A method and apparatus for requesting and allocating bandwidth in a broadband wireless communication system. The inventive method and apparatus includes a combination of techniques that allow a plurality of CPEs to communicate their bandwidth request messages to respective base stations. One technique includes a “polling” method whereby a base station polls CPEs individually or in groups and allocates bandwidth specifically for the purpose of allowing the CPEs to respond with bandwidth requests. The polling of the CPEs by the base station may be in response to a CPE setting a “poll-me bit” or, alternatively, it may be periodic. Another technique comprises “piggybacking” bandwidth requests on bandwidth already allocated to a CPE. In accordance with this technique, currently active CPEs request bandwidth using previously unused portions of uplink bandwidth that is already allocated to the CPE. The CPE is responsible for distributing the allocated uplink bandwidth in a manner that accommodates the services provided by the CPE. By using a combination of bandwidth allocation techniques, the present invention advantageously makes use of the efficiency benefits associated with each technique.
摘要:
A method and apparatus for adaptively obtaining bandwidth requests in a broadband wireless communication system. The method and apparatus includes dynamically varying technique combinations enabling a plurality of users to efficiently request bandwidth from a shared base station. A user may “piggyback” a new bandwidth request upon, or set a “poll-me bit” within, presently allocated bandwidth. A base station may poll users, individually or in groups, by allocating unrequested bandwidth for new requests. Polling may respond to a “poll-me bit,” and/or it may be adaptively periodic at a rate based on communication status parameters, such as recent communication activity and connection QoS levels. Group polling permits a possibility of collisions. Polling policies may be established for dynamically varying user groups, or may be determined for each user. Dynamic selection of appropriate polling techniques makes use of efficiency benefits associated with each technique.
摘要:
A method and apparatus for adaptively obtaining bandwidth requests in a broadband wireless communication system. The method and apparatus includes dynamically varying technique combinations enabling a plurality of users to efficiently request bandwidth from a shared base station. A user may “piggyback” a new bandwidth request upon, or set a “poll-me bit” within, presently allocated bandwidth. A base station may poll users, individually or in groups, by allocating unrequested bandwidth for new requests. Polling may respond to a “poll-me bit,” and/or it may be adaptively periodic at a rate based on communication status parameters, such as recent communication activity and connection QoS levels. Group polling permits a possibility of collisions. Polling policies may be established for dynamically varying user groups, or may be determined for each user. Dynamic selection of appropriate polling techniques makes use of efficiency benefits associated with each technique.