摘要:
Systems and methods provide a parameterized scheduling system that incorporates end-user application awareness and can be used with scheduling groups that contain data streams from heterogeneous applications. Data packets are analyzed at multiple protocol levels to detect characteristics associated with communicating the packets. The data packets are filtered so that detecting the characteristics is efficiently performed. The detected characteristics can be used for scheduling transmission of the packets. The detected characteristics can be used to dynamically change scheduling parameters. The dynamic scheduling parameters can maximize user Quality of Experience (QoE) in response to recurring network patterns, one-time events, application characteristics, protocol characteristics, device characteristics, service level agreements, or combinations thereof. Scheduling parameters may also incorporate notions of “duration neglect” and “recency effect” in an end-user's perception of video quality in order to manage video traffic during periods of congestion.
摘要:
Systems and methods provide a parameterized scheduling system that incorporates congestion detection and end-user application awareness and can be used with scheduling groups that contain data streams from heterogeneous applications. Congestion can be detected at multiple domains. Congestions can be detected using demand for communications, measure of resource usage in the communication device, or performance of the communication device. Congestions can also be detected using measures of protocol delay. The detected information can be used for scheduling transmission of the packets. Quality of Experience (QoE) for users can be maximized by efficient control responses to detected congestion.
摘要:
Systems and methods provide a parameterized scheduling system that incorporates end-user application awareness and can be used with scheduling groups that contain data streams from heterogeneous applications. Individual data queues within a scheduling group can be created based on application class, specific application, individual data streams or some combination thereof. Application information and Application Factors (AF) are used to modify scheduler parameters such as weights and credits to differentiate between data streams assigned to a scheduling group. Dynamic AF settings may adjust relative importance of user applications to maximize user Quality of Experience (QoE) in response to recurring network patterns, one-time events, application characteristics, protocol characteristics, device characteristics, service level agreements, or combinations thereof. Scheduling parameters may be dynamic and incorporate the notions of “duration neglect” and “recency effect” in an end-user's perception of video quality in order to optimally manage video traffic during periods of congestion.
摘要:
Systems and methods provide a parameterized scheduling system that incorporates end-user application awareness and can be used with scheduling groups that contain data streams from heterogeneous applications. Individual data queues within a scheduling group can be created based on application class, specific application, individual data streams or some combination thereof. Application information and Application Factors (AF) are used to modify scheduler parameters such as weights and credits to differentiate between data streams assigned to a scheduling group. Dynamic AF settings may adjust relative importance of user applications to maximize user Quality of Experience (QoE) in response to recurring network patterns, one-time events, application characteristics, protocol characteristics, device characteristics, service level agreements, or combinations thereof. Scheduling parameters may be dynamic and incorporate the notions of “duration neglect” and “recency effect” in an end-user's perception of video quality in order to optimally manage video traffic during periods of congestion.
摘要:
Systems and methods preserve application identification information on handover in a communication network. End user quality of experience is improved by determining applications associated with communications to and from the end user. The applications may include application classes and specific applications. The application information is used to schedule packets such that the end user quality of experience is improved for that application. When the end user is handed over between wireless access nodes, the access nodes transfer application information so that the improved end user quality of experience is maintained.
摘要:
Capacity and spectrum constrained, multiple-access communication systems optimize performance by selectively discarding packets. Changes in the communication systems may be driven using control responses. Control responses include intelligent discard of network packets under capacity constrained conditions. Packets are prioritized and discard decisions are made based on the prioritization. Various embodiments provide an interactive response by selectively discarding packets to enhance perceived and actual system throughput, provide a reactive response by selectively discarding data packets based on their relative impact to service quality to mitigate oversubscription, provide a proactive response by discarding packets based on predicted oversubscription, or provide a combination thereof. Packets may be prioritized for discard using correlations between discards and bandwidth reduction and quality degradation. The quality degradation for video packets may be measured objectively.
摘要:
Systems and methods preserve application identification information on handover in a communication network. End user quality of experience is improved by determining applications associated with communications to and from the end user. The applications may include application classes and specific applications. The application information is used to schedule packets such that the end user quality of experience is improved for that application. When the end user is handed over between wireless access nodes, the access nodes transfer application information so that the improved end user quality of experience is maintained.
摘要:
Capacity and spectrum constrained, multiple-access communication systems optimize performance by selectively discarding packets. Changes in the communication systems may be driven using control responses. Control responses include intelligent discard of network packets under capacity constrained conditions. Packets are prioritized and discard decisions are made based on the prioritization. Various embodiments provide an interactive response by selectively discarding packets to enhance perceived and actual system throughput, provide a reactive response by selectively discarding data packets based on their relative impact to service quality to mitigate oversubscription, provide a proactive response by discarding packets based on predicted oversubscription, or provide a combination thereof. Packets may be prioritized for discard using correlations between discards and bandwidth reduction and quality degradation. The quality degradation for video packets may be measured objectively.
摘要:
Systems and methods provide a weight-based scheduling system that incorporates end-user application awareness and can be used with scheduling groups that contain data streams from heterogeneous applications. Individual data queues within a scheduling group can be created based on application class, specific application, individual data streams or some combination thereof. Application information and Application Factors (AF) are used to modify scheduler weights to differentiate between data streams assigned to a scheduling group. Dynamic AF settings may adjust relative importance of user applications to maximize user Quality of Experience (QoE) in response to recurring network patterns, one-time events, application characteristics, protocol characteristics, device characteristics, service level agreements, or combinations thereof. Scheduling weights may be dynamic and incorporate the notions of “duration neglect” and “recency effect” in an end-user's perception of video quality in order to optimally manage video traffic during periods of congestion.
摘要:
Systems and methods provide a weight-based scheduling system that incorporates end-user application awareness and can be used with scheduling groups that contain data streams from heterogeneous applications. Individual data queues within a scheduling group can be created based on application class, specific application, individual data streams or some combination thereof. Application information and Application Factors (AF) are used to modify scheduler weights to differentiate between data streams assigned to a scheduling group. Dynamic AF settings may adjust relative importance of user applications to maximize user Quality of Experience (QoE) in response to recurring network patterns, one-time events, application characteristics, protocol characteristics, device characteristics, service level agreements, or combinations thereof. Scheduling weights may be dynamic and incorporate the notions of “duration neglect” and “recency effect” in an end-user's perception of video quality in order to optimally manage video traffic during periods of congestion.