Multijunction gallium aluminum arsenide-gallium arsenide-germanium solar
cell and process for fabricating same
    1.
    发明授权
    Multijunction gallium aluminum arsenide-gallium arsenide-germanium solar cell and process for fabricating same 失效
    多结镓镓砷化镓砷化镓锗太阳能电池及其制造方法

    公开(公告)号:US4128733A

    公开(公告)日:1978-12-05

    申请号:US864300

    申请日:1977-12-27

    Abstract: The specification describes a gallium aluminum arsenide-gallium arsenide-germanium solar cell and fabrication process therefor wherein the deposition of a layer of gallium aluminum arsenide establishes a first PN junction in the GaAs of one bandgap energy on one side of a gallium arsenide substrate, and the deposition of a layer of germanium establishes a second PN junction in Ge of a different bandgap energy on the other side of the GaAs substrate. The two PN junctions are responsive respectively to different wavelength ranges of solar energy to thus enhance the power output capability of a single wafer (substrate) solar cell. Utilization of the Group IV element germanium, as contrasted to compound semiconductors, simplifies the process control requirements relative to known prior art compound semiconductor processes, and germanium also provides a good crystal lattice match with gallium arsenide and thereby maximizes process yields. This latter feature also minimizes losses caused by the crystal defects associated with the interface between two semiconductors.

    Abstract translation: 该说明书描述了一种镓砷化镓镓砷化锗 - 锗锗太阳能电池及其制造方法,其中沉积砷化镓铝层在砷化镓衬底的一侧上的一个带隙能量的GaAs中建立第一PN结,以及 锗层的沉积在GaAs衬底的另一侧上在不同带隙能的Ge中建立第二PN结。 两个PN结分别响应于太阳能的不同波长范围,从而提高单个晶片(衬底)太阳能电池的功率输出能力。 与化合物半导体相比,IV族元素锗的利用简化了相对于已知的现有技术化合物半导体工艺的工艺控制要求,并且锗还提供了与砷化镓的良好晶格匹配,从而使工艺产量最大化。 后一个特征还使由与两个半导体之间的界面相关联的晶体缺陷引起的损耗最小化。

    Process for fabricating heterojunction structures utilizing a double
chamber vacuum deposition system
    2.
    发明授权
    Process for fabricating heterojunction structures utilizing a double chamber vacuum deposition system 失效
    使用双室真空沉积系统制造异质结结构的工艺

    公开(公告)号:US4171235A

    公开(公告)日:1979-10-16

    申请号:US931347

    申请日:1978-08-07

    Abstract: The specification describes a gallium aluminum arsenide-gallium arsenide-germanium solar cell and fabrication process therefor wherein the deposition of a layer of gallium aluminum arsenide establishes a first PN junction in the GaAs of one bandgap energy on one side of a gallium arsenide substrate, and the deposition of a layer of germanium establishes a second PN junction in Ge of a different bandgap energy on the other side of the GaAs substrate. The two PN junctions are responsive respectively to different wavelength ranges of solar energy to thus enhance the power output capability of a single wafer (substrate) solar cell. Utilization of the Group IV element germanium, as contrasted to compound semiconductors, simplifies the process control requirements relative to known prior art compound semiconductor processes, and germanium also provides a good crystal lattice match with gallium arsenide and thereby maximizes process yields. This latter feature also minimizes losses caused by the crystal defects associated with the interface between two semiconductors.

    Abstract translation: 该说明书描述了一种镓砷化镓镓砷化锗 - 锗锗太阳能电池及其制造方法,其中沉积砷化镓铝层在砷化镓衬底的一侧上的一个带隙能量的GaAs中建立第一PN结,以及 锗层的沉积在GaAs衬底的另一侧上在不同带隙能的Ge中建立第二PN结。 两个PN结分别响应于太阳能的不同波长范围,从而提高单个晶片(衬底)太阳能电池的功率输出能力。 与化合物半导体相比,IV族元素锗的利用简化了相对于已知的现有技术化合物半导体工艺的工艺控制要求,并且锗还提供了与砷化镓的良好晶格匹配,从而使工艺产量最大化。 后一个特征还使由与两个半导体之间的界面相关联的晶体缺陷引起的损耗最小化。

    CdTe passivation of HgCdTe by electrochemical deposition
    3.
    发明授权
    CdTe passivation of HgCdTe by electrochemical deposition 失效
    通过电化学沉积对HgCdTe的CdTe钝化

    公开(公告)号:US4465565A

    公开(公告)日:1984-08-14

    申请号:US479545

    申请日:1983-03-28

    Inventor: Kenneth R. Zanio

    Abstract: A thin passivating layer (14) of CdTe is formed on a layer of photoconductive HgCdTe (4) by means of electrochemical deposition. The photoconductive layer (4) is used as a cathode. A first anode (26) is fabricated of tellurium and a second anode (28) is fabricated of an inert substance such as graphite. An electrolyte (30) comprises an aqueous solution of CdSO.sub.4 and unsaturated TeO.sub.2. Alternatively, electrolyte (30) can be saturated with TeO.sub.2, in which case a first anode is fabricated of an inert substance, and an optional second anode is fabricated of cadmium. After purifying the cathode (1) and the electrolyte (30), cadmium and tellurium are simultaneously deposited upon cathode (1). Stoichiometric balance is maintained to maximize the resistivity of the passivating CdTe layer (14). This is accomplished by regulating the deposition voltage of cathode (1) with respect to a saturated calomel electrode (22). In a first embodiment, an n-type region (16) is formed in the p-type photoconductive layer (4) subsequent to electrochemical deposition of the passivating CdTe layer (14). In a second embodiment, the n-type region (16) is formed in the p-type layer (4) prior to electrochemical deposition of the CdTe passivating layer (14).

    Abstract translation: 通过电化学沉积在一层光导的HgCdTe(4)上形成一个CdTe薄的钝化层(14)。 光电导层(4)用作阴极。 第一阳极(26)由碲制成,第二阳极(28)由惰性物质如石墨制成。 电解质(30)包含CdSO 4水溶液和不饱和TeO 2。 或者,电解质(30)可以用TeO 2饱和,在这种情况下,第一阳极由惰性物质制成,并且任选的第二阳极由镉制成。 纯化阴极(1)和电解质(30)后,镉和碲同时沉积在阴极(1)上。 维持化学计量平衡以使钝化CdTe层(14)的电阻率最大化。 这通过调节阴极(1)相对于饱和甘汞电极(22)的沉积电压来实现。 在第一实施例中,在钝化CdTe层(14)的电化学沉积之后,在p型光电导层(4)中形成n型区域(16)。 在第二实施例中,在电化学沉积CdTe钝化层(14)之前,在p型层(4)中形成n型区域(16)。

Patent Agency Ranking