Abstract:
The present invention is in the field of flash memory. More particularly, embodiments of the present invention may provide a negative voltage for erasing when coupled to a memory cell to be erased and provide voltages to read or program when not coupled to a memory cell that is selected to be erased. Embodiments may also provide a high magnitude negative voltage to erase; a low impedance, low voltage current to read or program; and burn little to no current when not coupled to a memory cell that is selected to be erased.
Abstract:
The present invention is in the field of flash memory. More particularly, embodiments of the present invention may provide a negative voltage for erasing when coupled to a memory cell to be erased and provide voltages to read or program when not coupled to a memory cell that is selected to be erased. Embodiments may also provide a high magnitude negative voltage to erase; a low impedance, low voltage current to read or program; and burn little to no current when not coupled to a memory cell that is selected to be erased.
Abstract:
In one embodiment, the present invention includes a method to supply a negative voltage to at least one deselected wordline of a memory array. Further, while the negative voltage is supplied to deselected wordlines, a positive voltage may be supplied to a selected wordline. The memory array may be a flash memory incorporating multi-level cell architecture, in one embodiment.
Abstract:
The present invention is in the field of flash memory. More particularly, embodiments of the present invention may provide a negative voltage for erasing when coupled to a memory cell to be erased and provide voltages to read or program when not coupled to a memory cell that is selected to be erased. Embodiments may also provide a high magnitude negative voltage to erase; a low impedance, low voltage current to read or program; and burn little to no current when not coupled to a memory cell that is selected to be erased.
Abstract:
A negative voltage charge pump including a regulation circuit. The regulation circuit has a level shift ladder including a plurality of level shifters connected in series. One end of the level shift ladder receives a power supply voltage and the other end receives the negative output of the charge pump. A feedback voltage is generated from one of the intermediate nodes of the level shift ladder. A differential amplifier generates a regulation voltage which varies as a function of the feedback voltage and a reference voltage. The regulation voltage is applied to a frequency control input of a voltage-controlled oscillator for generating a signal that drives the charge pump. Each of the level shifters of the level shift ladder can be a triple well device that can be configured to handle negative voltages without forward biasing an internal p-n junction.
Abstract:
An apparatus and method for pre-charging an intermediate node for high-speed wordlines for accessing memory cells in high-speed memory arrays. The apparatus pre-charges a local capacitance located between a wordline supply voltage and the wordline to a voltage level that is greater than the wordline supply voltage. Once the wordline is selected, the charge stored on the local capacitance may be quickly shared with the capacitance of the wordline. The wordline supply voltage may be applied to the local capacitance to provide small, incremental voltage to move the wordline to its final voltage thereby improving the response time of the system.
Abstract:
A reference voltage generator for a flash memory is described. Specifically, the memory cells used in implementing a reference voltage generator are increased in size to enable the generator to be less sensitive to temperature changes as well as device noise. The flash cells may be coupled to threshold tuning devices, which enable the threshold voltage to be easily trimmed.
Abstract:
According to one aspect of the present invention, an apparatus is provided that includes a first global bit line, a second global bit line, a first block, a second block, and a reference cell array. The first block contains a first local bit line and a plurality of memory cells coupled to the first local bit line. The first local bit line can be selectively coupled to the first global bit line based upon a first control input. The second block contains a second local bit line and a plurality of memory cells coupled to the second local bit line. The second local bit line can be selectively coupled to the second global bit line based upon a second control input. The reference cell array contains a plurality of reference cells. The plurality of reference cells can be selectively coupled to either the first global bit line or the second global bit line based upon a third control input.
Abstract:
The present invention is in the field of charging a capacitance of a memory cell. Embodiments of the present invention program a memory cell by determining programming pulses to be used to program the memory cell based on a target state and the memory cell's response to previous program pulses.
Abstract:
An integrated circuit charge pump circuit including a plurality of stages, each stage including a first N type field effect switching transistor device having source and drain terminals connected in series with the source and drain terminals of all other stages, a second N type field effect control transistor device having drain and source terminals connecting the drain terminal and the gate terminal of the first switching transistor device, and a storage capacitor joined to the source terminal of the first device; a source of voltage to be pumped is connected to the drain terminal of the first device of the first stage. A first series of clock pulses is applied to the gate terminals of the first switching transistor devices in every other stage of the charge pump and to the gate terminals of the second control transistor devices in stages between; and a second series of clock pulses which do not overlap the first series of clock pulses is applied to the gate terminals of the first switching transistor devices in alternate stages of the charge pump and to the gate terminals of the second control transistor devices in stages between the alternate stages. These pulses cause the switching transistor to switch on and off in alternate stages in a manner that the gate terminal goes higher than the drain terminal so that charge is transferred without threshold drop between stages and high current as well as high voltage is pumped to the output terminal.