摘要:
A method of operating a programmable logic device, including the steps of using a full VDD supply voltage to operate one or more active blocks of the programmable logic device, and using a reduced supply voltage (e.g., ½ VDD) to operate one or more inactive blocks of the programmable logic device. The full VDD supply voltage and reduced supply voltage can be provided to the blocks of the programmable logic device through high-voltage n-channel transistors. A boosted voltage, greater than VDD, is applied to the gate of an n-channel transistor to provide the full VDD supply voltage to an active block. A standby voltage, less than VDD, is applied to the gate of an n-channel transistor to provide the reduced supply voltage to an inactive block. The inactive blocks can be determined during run time and/or design time of the programmable logic device.
摘要:
Memory cell structures and related circuitry for use in non-volatile memory devices can be fabricated utilizing standard CMOS processes, for example, 0.18 micron or 0.15 micron processes. Advantageously, the cell structures can be programmed so that a conductive path is formed between like type materials, for example, between a p-type gate and a p-type source/drain region or an n-type gate and an n-type source/drain region. Programming cells in this manner advantageously provides a programmed cell having a low, linear resistance after programming.
摘要:
Memory cell structures and related circuitry for use in non-volatile memory devices are described. The cell structures can be fabricated utilizing standard CMOS processes, e.g. sub 0.35 micron or sub 0.25 micron processes. Preferably, the cell structures can be fabricated using 0.18 micron or 0.15 micron standard CMOS processes. Advantageously, the cell structures can be programmed so that a conductive path is formed between like type materials. For example, in certain cell structures a cell is programmed by applying a programming voltage in such a way as to form a conductive path between a p-type gate and a p-type source/drain region or an n-type gate and an n-type source/drain region. Programming cells in this manner advantageously provides a programmed cell having a low, linear resistance after programming. In addition, novel charge pump circuits are provided that, in a preferred embodiment, are located “on chip” with an array of memory cells. These charge pump circuits are preferably fabricated utilizing the same standard CMOS processing techniques that were utilized to form the memory cell structures and related circuitry.
摘要:
An over-etched (OE) antifuse includes a lower electrode, an antifuse layer contacting the lower electrode by an over-etched via, and a second conductive layer formed on the antifuse layer. This over-etched via forms a trench in the lower electrode, wherein in one embodiment the depth of the trench approximates the thickness of the antifuse layer. The trench narrows the programming voltage distribution of the antifuses on the device, irrespective of topology. Because active circuits can be placed underneath the OE antifuses, the present invention dramatically reduces chip size in comparison to conventional devices.
摘要:
Antifuses are provided which include first and second conductive layers and an antifuse layer positioned between the first and second conductive layers. The antifuse layer includes at least one oxide layer positioned between two amorphous silicon layers. Interconnect structures and programmable logic devices are also provided which include the antifuses.
摘要:
An over-etched (OE) antifuse includes a lower electrode, an antifuse layer contacting the lower electrode by an over-etched via, and a second conductive layer formed on the antifuse layer. This over-etched via forms a trench in the lower electrode, wherein in one embodiment the depth of the trench approximates the thickness of the antifuse layer. The trench narrows the programming voltage distribution of the antifuses on the device, irrespective of topology. Because active circuits can be placed underneath the OE antifuses, the present invention dramatically reduces chip size in comparison to conventional devices.
摘要:
SEU-hardening series resistances loads are formed within the gate structures of cross-coupled inverters of a latch. For some embodiments, the gate contact for the input of each cross-coupled inverter has a sufficiently high resistance to provide the SEU-hardening series resistance. For other embodiments, a conductive trace layer coupled to the input of each cross-coupled inverter includes a high-resistivity portion that provides the SEU-hardening series resistance.
摘要:
SEU-hardening series resistances loads are formed within the gate structures of cross-coupled inverters of a latch. For some embodiments, the gate contact for the input of each cross-coupled inverter has a sufficiently high resistance to provide the SEU-hardening series resistance. For other embodiments, a conductive trace layer coupled to the input of each cross-coupled inverter includes a high-resistivity portion that provides the SEU-hardening series resistance.
摘要:
Antifuses are provided which include first and second conductive layers and an antifuse layer positioned between the first and second conductive layers. The antifuse layer includes at least one oxide layer positioned between two amorphous silicon layers. Interconnect structures and programmable logic devices are also provided which include the antifuses.
摘要:
An antifuse is provided which includes a first conductive layer, an antifuse layer formed on the first conductive layer, and a second conductive layer formed on the antifuse layer. A portion of the antifuse layer forms a substantially orthogonal angle with the first conductive layer and the second conductive layer. This "corner" formation of the antifuse enhances the electric field at this location during programming, thereby providing a predictable location for the filament, i.e. the conductive path between the first and second conductive layers. This antifuse provides other advantages including: a relatively low programming voltage, good step coverage for the antifuse layer and the upper conductive layer, a low, stable resistance value, and minimal shearing effects on the filament.