摘要:
A pedometer that records the number of steps over a defined period of time and a moment sensor that records the moments experienced by a prosthesis are used in a networked computer environment to assess the functional activity level and instability of a lower limb amputee. The networked environment may include a user computer and a server computer in communication through the Internet. Both the user computer and the server computer include a functional assessment tool and a stability assessment tool. The tools on the user computer and server computer cooperate in assessing the activity level and the instability of a lower limb amputee. The server computer may further host a Website and a secure online database that provides support to the user including the managing of clients and their medical records.
摘要:
A method for assessing the risk of a patient to fall. The method includes attaching a pedometer on a patient, wherein the pedometer includes one or more sensors, allowing the patient to engage in activities throughout a predetermined period of time in, at least, an environment the patient occupies for a majority of the day while the pedometer senses information relating to steps taken by the patient. With one or more computers or with the pedometer, calculating at least one step variable from the acceleration information. With one or more computers or with the pedometer, comparing the at least one calculated step variable to a model step variable, and with one or more computers. Then, providing an assessment of the risk of the patient to fall. The pedometer may alert the patient when a risk of falling is detected.
摘要:
A prosthesis socket is fitted with a viscoelastic memory material. The material can aspirate a fluid to decrease the interior volume of the socket to compensate for residual limb volume decreases, and fluid can be removed from the viscoelastic memory material to increase the interior volume of the socket to compensate for residual limb volume increases.
摘要:
A prosthetic foot assembly is disclosed. The assembly includes a pivoting ankle joint with a hydraulic system, a prosthetic foot connected to the distal side of the ankle joint, and, at the proximal side, the ankle joint includes a transducer with pyramid adaptor for attaching to a pylon. The ankle joint sensor provides data collection during the stance and optionally, the swing, phases of walking using, for example, strain gages and accelerometers. Also disclosed are methods for real-time feature extraction. Key parameters are captured to which are applied linear, fuzzy logic, neural net, or generic algorithms to determine current state (walking flat, uphill, downhill etc.) in real time and execute changes to the angle between the ankle and foot almost instantaneously based on those parameters.
摘要:
A robotic prosthesis alignment device is disclosed that may automatically move the alignment of a prosthesis socket in relation to a prosthesis shank. The robotic prosthesis alignment device provides automatic translation in two axes. The robotic prosthesis alignment device includes angulation mechanics that automatically provide for plantarflexion, dorsiflexion, inversion, and eversion of the foot and shank with respect to the prosthesis socket. A surrogate device is also disclosed that can replicate the alignment achieved with the robotic prosthesis alignment device.
摘要:
A computerized prosthesis alignment system includes a transducer that can measure socket reactions in the anterior/posterior plane and the right/left planes, while canceling or reducing the transverse forces on the measurements of these socket reactions. In addition, the transducer is also capable of determining the axial load or weight experienced by the prosthesis. The computerized prosthesis alignment system is in communication with a host computer. The moment data from the transducer is interpreted by the user via a computer interface. The host computer includes memory for storing one or more applications. These applications receive data from the transducer, interpret the data with discrete algebraic or fuzzy logic algorithms, and display the output numerically and graphically. Applications may also interpret the data to provide analyses to the user for aligning the prosthesis.
摘要:
A method for tuning an orthosis for the correct stiffness and/or shank angle includes via one or more computers, receiving patient information including forces experienced by a joint of a patient wearing an orthosis, wherein the orthosis has a degree of stiffness and a shank angle, via one or more computers, comparing the patient information to model information, wherein the model information includes the forces of a correctly functioning joint, and changing the degree of stiffness and/or the shank angle of the orthosis.
摘要:
A robotic prosthesis alignment device is disclosed that may automatically move the alignment of a prosthesis socket in relation to a prosthesis shank. The robotic prosthesis alignment device provides automatic translation in two axes. The robotic prosthesis alignment device includes angulation mechanics that automatically provide for plantarflexion, dorsiflexion, inversion, and eversion of the foot and shank with respect to the prosthesis socket. A surrogate device is also disclosed that can replicate the alignment achieved with the robotic prosthesis alignment device.
摘要:
A computerized prosthesis alignment system includes a transducer that can measure socket reactions in the anterior/posterior plane and the right/left planes, while canceling or reducing the transverse forces on the measurements of these socket reactions. In addition, the transducer is also capable of determining the axial load or weight experienced by the prosthesis. The computerized prosthesis alignment system is in communication with a host computer. The moment data from the transducer is interpreted by the user via a computer interface. The host computer includes memory for storing one or more applications. These applications receive data from the transducer, interpret the data with discrete algebraic or fuzzy logic algorithms, and display the output numerically and graphically. Applications may also interpret the data to provide analyses to the user for aligning the prosthesis.
摘要:
A computerized prosthesis alignment system includes a transducer that can measure socket reactions in the anterior/posterior plane and the right/left planes, while canceling or reducing the transverse forces on the measurements of these socket reactions. In addition, the transducer is also capable of determining the axial load or weight experienced by the prosthesis. The computerized prosthesis alignment system is in communication with a host computer. The moment data from the transducer is interpreted by the user via a computer interface. The host computer includes memory for storing one or more applications. These applications receive data from the transducer, interpret the data with discrete algebraic or fuzzy logic algorithms, and display the output numerically and graphically. Applications may also interpret the data to provide analyses to the user for aligning the prosthesis.