摘要:
The present invention provides an actuator exhibiting improved performance. The actuator is formed of an electrically conductive thin film formed from an ionic liquid and carbon nanotubes having an aspect ratio of not less than 104; or an electrically conductive thin film formed from an ionic liquid and carbon nanotubes having a length of not less than 50 μm.
摘要:
The present invention provides an actuator exhibiting improved performance. The actuator is formed of an electrically conductive thin film formed from an ionic liquid and carbon nanotubes having an aspect ratio of not less than 104; or an electrically conductive thin film formed from an ionic liquid and carbon nanotubes having a length of not less than 50 μm.
摘要:
The present invention provides a method for easily producing an excellent actuator element wherein carbon nanotubes are extremely well dispersed, in the production of an actuator element using a hydrophilic ionic liquid. According to one embodiment, the invention provides an electroconductive film composed of a polymer gel having carbon nanotubes with an aspect ratio of at least 103 or more, an ionic liquid, and a polymer.
摘要:
A carbon nanotubes (CNTs)-containing resin composite comprised of a synthetic resin-impregnated aligned CNTs aggregate to have a specific surface area of at least 600 m2/g. Its production method comprises a step of laying down an aligned CNTs aggregate having grown perpendicularly from a substrate, a step of impregnating the laid-down aligned CNTs aggregate with a resin, and a step of shaping the resin-impregnated aligned CNTs aggregate into a sheet. Accordingly, there are provided a CNTs-containing resin composite having a high CNT content and a high degree of alignment and having a desired shape capable of fully taking the advantages of anisotropy intrinsic to CNTs, and a production method capable of producing it with ease.
摘要:
An aligned carbon nanotube bulk structure capable of attaining high density and high hardness not found so far. The aligned carbon nanotube bulk structure has a plurality of carbon nanotubes (CNTs) applied with a density-increasing treatment, and having alignment in a predetermined direction, the structure has a degree of anisotropy of 1:3 or more between the direction of alignment and the direction vertical to the direction of alignment, and the intensity by irradiating X-rays along the direction of alignment is higher than the intensity by irradiating X-rays from the direction vertical to the direction of alignment at a (002) peak in X-ray diffraction data, and the degree of alignment thereof satisfies predetermined conditions.
摘要:
An electrochemical capacitor comprising a nonaqueous electrolyte and a pair of polarizable electrodes, wherein carbon nanotubes are used as an electrode material for at least one of the positive electrode and the negative electrode, the carbon nanotubes have a specific surface area of at least 700 m2/g and contain semiconductive carbon nanotubes, and the electrode material exhibits a voltage dependency of differential capacity by electrochemical doping. The electrochemical capacitor solves the problems associated with activated carbon electrodes and, exploiting the excellent characteristics of carbon nanotubes, has increased capacitance and increased energy density, therefore realizing a reduced internal resistance and a prolonged service life.
摘要:
Belt reversing mechanisms configured to reverse a belt at an upstream portion and a downstream portion of a return belt of a belt conveyor, includes two sets of pinch rollers spaced apart from each other in a belt movement direction and configured to support the belt, and two sets of guide roller mechanisms spaced apart from each other in the belt movement direction and are configured to guide the belt in a tubular shape from outside between the pinch rollers such that the belt is reversed 180 degrees and twisted to cause a center portion of a span between the pinch rollers so as to form a tubular open cross-section with a dirty surface facing inward; and the belt between the two sets of pinch rollers forms a catenary curve or a curve close to the catenary curve.
摘要:
This invention provides an aligned single-layer carbon nanotube bulk structure, which comprises an assembly of a plurality of aligned single-layer carbon nanotube and has a height of not less than 10 μm, and an aligned single-layer carbon nanotube bulk structure which comprises an assembly of a plurality of aligned single-layer carbon nanotubes and has been patterned in a predetermined form. This structure is produced by chemical vapor deposition (CVD) of carbon nanotubes in the presence of a metal catalyst in a reaction atmosphere with an oxidizing agent, preferably water, added thereto. An aligned single-layer carbon nanotube bulk structure, which has realized high purify and significantly large scaled length or height, its production process and apparatus, and its applied products are provided.
摘要:
An aligned carbon nanotube bulk structure capable of attaining high density and high hardness not found so far. The aligned carbon nanotube bulk structure has a plurality of carbon nanotubes (CNTs) applied with a density-increasing treatment, and having alignment in a predetermined direction, the structure has a degree of anisotropy of 1:3 or more between the direction of alignment and the direction vertical to the direction of alignment, and the intensity by irradiating X-rays along the direction of alignment is higher than the intensity by irradiating X-rays from the direction vertical to the direction of alignment at a (002) peak in X-ray diffraction data, and the degree of alignment thereof satisfies predetermined conditions.
摘要:
An apparatus (CVD apparatus (1)) having a reaction chamber (3) for accommodating a substrate (2) formed with a metal catalyst film and means (gas supply pipes (5, 6)) for supplying a feedstock gas (9) and a catalyst activating material (10) into the reaction chamber (3) for manufacturing CNTs aligned in a direction perpendicular to the catalyst film surface (2a) of the substrate (2), wherein the means for supplying the feedstock gas (9) and the catalyst activating material (10) have a plurality of ejection holes placed at positions facing the catalyst film surface (2a) of the substrate (2), and the ejecting direction of the ejection holes is adjusted to the direction of alignment of CNTs grown from the metal catalyst film. This can provide a manufacturing technology for CNTs capable of mass-producing aligned CNTs at lower cost.