摘要:
To detect a defect without being limited to the current path of a sample. The presence or absence of a defect in a sample is detected by allowing said sample to stand for a predetermined period of time after heating said sample with a heat source and by observing the temperature distribution formed on said sample by an observation unit.
摘要:
An apparatus for diagnosing a fault in a semiconductor device includes an laser applying unit, a detection/conversion unit, and a fault diagnosis unit. The semiconductor device is held at a state where no bias voltage is applied thereto. The laser applying unit then applies a pulse laser beam having a predetermined wavelength to the semiconductor device so as to two-dimensionally scan the semiconductor device with the pulse laser beam. The detection/conversion unit detects an electromagnetic wave generated from a laser applied position in the semiconductor device, and converts the detected electromagnetic wave into a time-varying voltage signal that corresponds to a time-varying amplitude of an electric field of the electromagnetic wave. The fault diagnosis unit derives an electric field distribution in the semiconductor device on the basis of the time-varying voltage signal to perform fault diagnosis on the semiconductor device.
摘要:
Failure analysis method includes performing fixed radiation of semiconductor chip (wafer) by photocurrent generation laser beam, scanning and radiating a region to be observed on semiconductor chip by heating laser beam, detecting, by a SQUID fluxmeter, current change generated in the semiconductor chip by radiating the photocurrent generation laser beam and the heating laser beam, and analyzing failure of the semiconductor chip based on current change detected by the SQUID fluxmeter. Radiation of photocurrent generation laser beam and heating laser beam are performed from a back surface side of the LSI chip, and detection by the SQUID fluxmeter is performed on a front surface side of the LSI chip. In analysis of failure of the LSI chip, image processing is performed in which a signal outputted from the SQUID fluxmeter is made to correspond to a scanning point. Visualization of defects is possible.
摘要:
To detect a defect without being limited to the current path of a sample. The presence or absence of a defect in a sample is detected by allowing said sample to stand for a predetermined period of time after heating said sample with a heat source and by observing the temperature distribution formed on said sample by an observation unit.
摘要:
A nondestructive inspection device (or method) is basically configured such that a laser beam (1300 nm) is irradiated on a surface (or back) of a semiconductor device chip to scan. Due to irradiation of the laser beam, a defect position is heated to cause a thermoelectromotive current, which induces a magnetic field. A magnetic field detector such as SQUID detects a strength of the magnetic field, based on which a scan magnetic field image is produced. A display device superimposes the scan magnetic field image on a scan laser microphotograph on a screen, so it is possible to perform defect inspection on the semiconductor device chip. Incidentally, a semiconductor device wafer is constructed to include a thermoelectromotive force generator and its wires, which are electrically connected to first-layer wires. By irradiation of the laser beam on the thermoelectromotive force generator, it is possible to detect a short-circuit defect, which lies between the first-layer wires. Further, it is possible to perform nondestructive inspection on a semiconductor integrated circuit, which is in an intermediate stage of manufacture before formation of bonding pads and which includes a closed circuit configured by a first-layer wire, including a thermoelectromotive force generating defect, a circuit via and an inspection via as well as a metal film, which is formed in a relatively broad range of a surface area and is used to form a second-layer wire.
摘要:
Laser beam 104 having an irradiation power not less than 1 mW is irradiated onto an observed region, and a variation in a power source current 112 is detected. When the laser beam 104 is irradiated onto a parasitic insulating film 107 which is a parasitic MIM structural spot, the current 112 increases due to a temperature characteristic of the current 112 flowing through the parasitic insulating film 107, whereby the portion of the parasitic MIM structure can be detected. Moreover, laser beam 108 having a wavelength not less than 1.0 &mgr;m is irradiated onto an observed region from the back surface of the chip, and a variation in the power source current is detected. Light having a wavelength not less than 1.0 &mgr;m has the ability to travel through a Si substrate 110 so that the laser beam reaches a wiring portion. Irradiation of the laser beam onto the parasitic insulating film 107 having the parasitic MIM structure increases the current, so that the portion of the parasitic MIM structure can be detected.
摘要:
In a system for evaluating a semiconductor device, a laser beam generating unit generates a laser beam, and an optical fiber receives the laser beam to heat an area of the semiconductor device. A current deviation detector or a voltage deviation detector is connected to a terminal of the semiconductor device. As a result, the current deviation detector or the voltage deviation detector detects a current deviation or a voltage deviation at the terminal of the semiconductor device.
摘要:
The invention provides an apparatus for diagnosing a void within a conductive material for interconnections of semiconductor integrated circuits. A laser beam irradiating section is provided for supplying a thermal wave to interconnections of the semiconductor integrated circuits to cause a rise of a temperature of the conductive material due to a thermal accumulation around a void within the conductive material, the thermal wave supplying section being able to move in a plane for accomplishment of a scanning operation of the thermal wave supply. A voltage applying section is connected to the interconnections. A current detecting section is connected to the interconnections for detecting an amount of an electrical current flowing through any part of the interconnections to sense a variation of the amount thereof on account of the rise of the temperature of the conductive material due to the thermal accumulation around the void within the conductive material so as to detect any void within the conductive material.
摘要:
A non-destructive testing method of improved efficiency. Two one-dimensional images are obtained by scanning an optical line over an object to be tested in an X- and Y-directions each for one scan in lieu of conducting a prior art method of two-dimensionally scanning a optical spot on the object to be tested. A two-dimensional image is reconstructed from the obtained two one-dimensional images. Since only two relative scans between the object to be tested and the optical line is necessary, scanning time is remarkably shortened in comparison with that of the prior art.
摘要:
A non-destructive method of narrowing down the location of a failure in a sample includes a first step of acquiring first and second images of magnetic-field distributions obtained by scanning a laser beam irradiating first and second samples, respectively, and if there is a difference between the first and second images of the magnetic-field distributions, a second step of acquiring first and second current images from magnetic-field distributions acquired by scanning the first and second samples by a magnetic-field detector in a state in which a prescribed location on the first and second samples is being irradiated by the laser beam. The difference between the first and second current images is found and, based upon the difference image found, it becomes possible to identify a disparity in current paths relating to the prescribed location on the first and second samples.