摘要:
A safety device for use in a secondary battery having a battery case formed with a hole open to outside of the battery case, and a generating unit airtightly housed in the battery case. The safety device includes a disk spring mounted on the battery case to close the hole and having one side thereof convexed toward the inside of the battery case. A switch is provided on the backside of the disk spring. It is adapted to change over under a stress applied from the disk spring when the disk spring bends backward so that the other side thereof is convexed toward the outside of the battery case. The switch is provided in a current flow path of the secondary battery.
摘要:
A composite film for a superstrate solar cell or a substrate solar cell has a transparent conductive film and a conductive reflective film, wherein the transparent conductive film is formed by using a wet coating method to apply a transparent conductive film composition or dispersion containing microparticles of a conductive oxide, the conductive reflective film is formed by using a wet coating method to apply a conductive reflective film composition containing metal nanoparticles, the average diameter of holes occurring at the contact surface of the conductive reflective film on either the side of the photovoltaic layer or the side of the transparent conductive film is not more than 100 nm, the average depth at which the holes are positioned is not more than 100 nm, and the number density of the holes is not more than 30 holes/μm2.
摘要:
A safety device for a battery which can prevent explosion of the battery due to overcharging or shortcircuiting. In the safety device, a current flows through generating unit, lead, terminal of a conductor case, PTC plate, annular terminal, contact to electrode lid. A disk spring, generally called a bimetal, is adapted to bend backward when it is heated to a predetermined temperature. If the generating unit heats up by producing gas due to overcharging or shortcircuiting, the disk spring is heated. When heated to a predetermined temperature, it will bend backward, while pushing up a moving piece, which in turn pushing up the contact, thus separating the contact from the annular terminal. The current-flow path in the battery is thus cut, so that the generating unit will not heat up any further.
摘要:
A composition for forming transparent conductive films comprises a tin-containing indium oxide (ITO) powder dispersed in a binder solution. The binder solution comprises a mixed organic solvent consisting of at least one polar solvent and at least one non-polar solvent, in which a polymer having a weight-average molecular weight of from 8,000 to 150,000 is dissolved. The polymer contains (a) an acidic functional group in such a proportion that the polymer has an acid number of from 0.5 to 15 mg-KOH/g, or (b) a polyalkylene glycol chain in a proportion of from 0.5% to 40% by weight, or both of (a) and (b) in the molecule. Alternatively, the binder solution comprises an actinic radiation-curable binder, which comprises an acrylate or methacrylate compound containing an acid phosphate group in the molecule. The composition can form, by coating, a transparent conductive film having improved electrical and optical properties.
摘要:
A conductive reflective film which is formed by calcining a substrate on which a composition containing metal nanoparticles is coated, the conductive reflective film including pores which appear on the film contact surface in the substrate side having an average diameter of 100 nm or less, an average depth of 100 nm or less in terms of position of the pores, and a number density of the pores of 30 pores/μm2 or less.
摘要:
A composite film for a superstrate solar cell or a substrate solar cell has a transparent conductive film and a conductive reflective film, wherein the transparent conductive film is formed by using a wet coating method to apply a transparent conductive film composition or dispersion containing microparticles of a conductive oxide, the conductive reflective film is formed by using a wet coating method to apply a conductive reflective film composition containing metal nanoparticles, the average diameter of holes occurring at the contact surface of the conductive reflective film on either the side of the photovoltaic layer or the side of the transparent conductive film is not more than 100 nm, the average depth at which the holes are positioned is not more than 100 nm, and the number density of the holes is not more than 30 holes/μm2.
摘要:
The present invention aims to provide a method for producing a dispersion of metal nanoparticles which enables to control the shape and the particle diameter over a wide range, a dispersion of metal nanoparticles having superior dispersion stability, and a method for producing the same. In addition, the present invention further aims to provide a dispersion of metal nanoparticles which has a volume resistivity of 2×10−6 to 6×10−6 Ω·cm and is suitable for use as an electrically conductive material, and a method for producing the same. Moreover, the present invention further aims to provide a method for synthesizing metal nanoparticles which can produce metal nanoparticles suitable for use as electrically conductive materials by synthesizing the metal nanoparticles from a insoluble metal salt which is free of corrosive materials.
摘要:
Each of the metal nano-particles present in a dispersion, which comprises at least one metal selected from the group consisting of precious metals and transition metals or an alloy of at least two metals selected from the foregoing metals, comprises a metal particle in which an organic metal compound of a fatty acid and/or an amine-metal complex is adhered to the periphery of the metal particle. This organic metal compound and the amine-metal complex are admixed together in a solvent and then the resulting mixture is subjected to a reducing treatment to thus form a dispersion containing metal nano-particles in a concentration of not less than 5% by mass and not more than 90% by mass. The resulting dispersion is applied onto the surface of a base material, followed by drying the applied layer of the dispersion and then firing the dried layer of the dispersion at a low temperature to thus form a thin metallic wire or a metal film having conductivity.