Abstract:
The present invention relates to a pressure-sensitive adhesive composition including a polymer of a monomer mixture containing isobornyl (meth)acrylate, a pressure-sensitive adhesive sheet, and a semiconductor wafer backgrinding method. In the present invention, by using isobornyl (meth)acrylate which is a hard-type monomer and has a low hydrophilic property, a pressure-sensitive adhesive composition having superior releasing and re-releasing properties and wettability with respect to the wafer, and having an excellent wafer-proofing property; a pressure-sensitive adhesive sheet prepared by using the pressure-sensitive adhesive composition; and a backgrinding method using the pressure-sensitive adhesive sheet can be provided.
Abstract:
The present invention relates to a supported catalyst that can be used to produce a carbon nanotube aggregate with high bulk density, a method for preparing the supported catalyst, a carbon nanotube aggregate produced using the supported catalyst, and a method for producing the carbon nanotube aggregate. According to the present invention, the bulk density of the carbon nanotube aggregate is easily controllable. Therefore, the carbon nanotube aggregate is suitable for use in various fields.
Abstract:
A fluidized bed reactor includes: a reactor body; a dispersion plate mounted within the reactor body to partition the inside of the reactor body in a traverse direction and having a plurality of holes through which a reaction gas passes; a nozzle unit mounted on one surface of the dispersion plate to receive an inert gas from outside the reactor and inject the inert gas so as to crush deposits on the dispersion plate; a sensing unit configured to sense the deposits on the dispersion plate; and a control unit configured to control operation of the nozzle unit according to information sensed in the sensing unit.
Abstract:
The present invention relates to a method for producing carbon nanostructures using a fluidized bed reactor. According to the method, some of the as-produced carbon nanostructures remain uncollected and are used as fluidic materials to improve the fluidity in the reactor. The method enables the production of carbon nanostructures in a continuous process. In addition, the fluidity of the catalyst and the fluidic materials in the reactor is optimized, making the production of carbon nanostructures efficient.