Abstract:
An organic light emitting display device can include a substrate, two or more first electrodes positioned on the substrate and spaced apart from one another, an auxiliary electrode positioned between the first electrodes, a barrier rib positioned on the auxiliary electrode and having a reversely tapered structure including at least two layers, a bank layer exposing portions of the first electrodes to define a light emission region, an organic layer positioned in the light emission region and patterned by the barrier rib, and a second electrode positioned on the organic layer and the barrier rib and disposed to be in contact with the auxiliary electrode.
Abstract:
A disclosed liquid crystal display includes a substrate with a gate electrode, a gate insulation film, an active layer, a source electrode, a drain electrode, and a first passivation film formed on the substrate. An organic insulation film having a first contact hole and a common electrode having a second contact hole are formed on the first passivation film using a single mask. The display also includes a second passivation film on the common electrode, and a pixel electrode on the second passivation film and connected to the drain electrode via the contact hole through the second passivation film. The top surface of the organic insulation film adjacent to a side edge of the organic insulation film is uncovered by the common electrode.
Abstract:
A display is disclosed which includes a substrate, a first thin film transistor, a second thin film transistor, a first storage capacitor electrode, an oxide layer, a nitride layer, a second storage capacitor electrode, a planar layer and a pixel electrode. The first thin film transistor is disposed in a first area on the substrate. The second thin film transistor is disposed in a second area on the substrate. The first storage capacitor electrode is disposed in a third area on the substrate. The oxide layer covers the first thin film transistor and the second thin film transistor, and exposes the first storage capacitor electrode. The nitride layer is disposed on the oxide layer and covers the first storage capacitor electrode. The second storage capacitor electrode includes a first metal layer and a second metal layer, and overlaps with the first storage capacitor electrode on the nitride layer. The planar layer covers the first thin film transistor, the second thin film transistor and the second storage capacitor electrode. The pixel electrode is disposed on the planar layer.
Abstract:
A display is disclosed which includes a substrate, a first thin film transistor, a second thin film transistor, a first storage capacitor electrode, an oxide layer, a nitride layer, a second storage capacitor electrode, a planar layer and a pixel electrode. The first thin film transistor is disposed in a first area on the substrate. The second thin film transistor is disposed in a second area on the substrate. The first storage capacitor electrode is disposed in a third area on the substrate. The oxide layer covers the first thin film transistor and the second thin film transistor, and exposes the first storage capacitor electrode. The nitride layer is disposed on the oxide layer and covers the first storage capacitor electrode. The second storage capacitor electrode includes a first metal layer and a second metal layer, and overlaps with the first storage capacitor electrode on the nitride layer. The planar layer covers the first thin film transistor, the second thin film transistor and the second storage capacitor electrode. The pixel electrode is disposed on the planar layer.
Abstract:
A thin film transistor substrate includes a first thin film transistor disposed having a polycrystalline semiconductor layer, a first gate electrode on the polycrystalline semiconductor layer, a first source electrode and a first drain electrode; a first gate insulating layer between the polycrystalline semiconductor layer and the first gate electrode; a second thin film transistor disposed having an oxide semiconductor layer on the first gate electrode, a second gate electrode on the oxide semiconductor layer, a second source electrode and a second drain electrode; an intermediate insulating layer disposed on the first gate electrode and under the oxide semiconductor layer; and a second gate insulating layer on the intermediate insulating layer and under the first source electrode, the first drain electrode and the second gate electrode.
Abstract:
A thin film transistor substrate having two different types of thin film transistors on the same substrate, and a display using the same are discussed. The thin film transistor substrate can include a substrate, a first thin film transistor (TFT), a second TFT, a first storage capacitor electrode, an oxide layer, a nitride layer, a second storage capacitor electrode, a planar layer and a pixel electrode. The first TFT is disposed in a first area, the second TFT is disposed in a second area, and the first storage capacitor electrode is disposed in a third area on the substrate respectively. The oxide layer covers the first and second TFTs, and exposes the first storage capacitor electrode. The nitride layer is disposed on the oxide layer and covers the first storage capacitor electrode. The second storage capacitor electrode overlaps with the first storage capacitor electrode on the nitride layer. The planar layer covers the first and second TFTs, and the second storage capacitor electrode. The pixel electrode is disposed on the planar layer.
Abstract:
Provided are a thin film transistor (TFT) substrate, a display device, and a method of forming the TFT. A TFT substrate includes: a first TFT including: a polycrystalline semiconductor (PS) layer, a first gate electrode (GE) overlapping the PS layer, a nitride layer (NL) on the first GE, an oxide layer (OL) on the NL, and a first source electrode and a first drain electrode on the OL, and a second TFT including: a second GE on a same layer as the first GE, a hydrogen collecting layer between the second GE and the NL, an oxide semiconductor (OS) layer on the OL, a second source electrode and a second drain electrode contacting respective sides of the OS layer, wherein the first TFT and the second TFT are disposed on a same substrate, and wherein the NL includes an opening exposing the hydrogen collecting layer of the second TFT.
Abstract:
The present disclosure relates to an organic light emitting diode display having high aperture ratio and a method for manufacturing the same. The present disclosure suggests an organic light emitting diode display comprising: a plurality of pixel areas disposed in a matrix manner on a substrate; a thin film transistor disposed in the pixel area; an organic light emitting diode connected to the thin film transistor and disposed in the pixel area; and a three-stack storage capacitor having four electrodes connected to the thin film transistor and the organic light emitting diode.