Abstract:
A light source module includes at least one light source emitting light, and a body supporting the light source, wherein the body includes a heat sink absorbing heat from the light source and dissipating the heat to the outside, an insulating layer having electrical insulating properties, the insulating layer being provided on at least one surface of the heat sink, and a conductive layer contacted with the insulating layer, the conductive layer being at least provided in a path region in which electric current is applied to the light source, the conductive layer being contacted with the light source. Accordingly, it is possible to obtain effects such as rapid fabrication processes, inexpensive fabrication cost, facilitation of mass production, improvement of product yield, and promotion of heat dissipation. Furthermore, it is possible to obtain various effects that can be understood through configurations described in embodiments.
Abstract:
Disclosed is a cooling apparatus using thermoelectric modules. The cooling apparatus includes a cooling container, a first thermoelectric module contacting the cooling container at a first position, and a first heat dissipating module contacting the first thermoelectric module. The first heat dissipating module includes a loop heat pipe including a first evaporation unit contacting the first thermoelectric module and provided with a wick structure located therein, a first condensation unit located at the outside of the cooling container, a first vapor pipe line configured to interconnect one side of the first evaporation unit and one side of the first condensation unit such that gas is placed therein, and a first liquid pipe line configured to interconnect the other side of the first evaporation unit and the other side of the first condensation unit such that a working fluid is placed therein.
Abstract:
There is disclosed a lighting apparatus including t light emitting unit including a light emitting part having a LED, a base part in which the light emitting part is mounted, a plurality of heat pipes fixed to the base part, and a plurality of heat radiation plates comprising a plurality of insertion holes to pass the plurality of the heat pipes there through and a flow hole for flowing external air there through, respectively, wherein a plurality of auxiliary pin arrays comprising a plurality of auxiliary pins inclined a preset angle are provided in each of the heat radiation plates, and a turbulence generation unit for generating turbulence flow when external air is flowing is provided in the auxiliary pin.
Abstract:
A light source module includes at least one light source, and a body supporting the light source. The body includes a heat sink supporting the light source on a top surface thereof, the heat sink absorbing heat from the light source and dissipating the heat to the outside, an insulating layer provided on at least one surface of the heat sink, the insulating layer having electrical insulating properties, and a conductive layer provided on the insulating layer. The conductive layer includes connection regions through which electric current is supplied to the light source, and a light source region disposed between the connection regions, the light source region having the light source mounted therein. A protective layer is stacked in the connection region. Accordingly, it is possible to obtain effects such as rapid fabrication processes, inexpensive fabrication cost, facilitation of mass production, improvement of product yield, protection of a conductive material, improvement of the lifespan of products, and enhancement of the stability of products.
Abstract:
Provided is a lighting apparatus. The lighting apparatus includes one or more light-emitting modules; a base plate having a bottom surface to which the one or more light-emitting modules are attached; and a heat dissipation fin assembly seated on a top surface of the base plate, wherein the heat dissipation fin assembly includes a plurality of heat dissipation fins which are mounted upright on the top surface of the base plate, wherein each of the heat dissipation fins has a predetermined width in a radial direction from a center of the base plate, and is formed by a thin sheet of a graphite material.
Abstract:
A light source module includes at least one light source emitting light, and a body supporting the light source. The body includes a heat sink absorbing heat from the light source and dissipating the heat to the outside, an insulating layer having electrical insulating properties, the insulating layer being provided on at least one surface of the heat sink, and a conductive layer provided on the insulating layer to enable electric current to flow therein. The conductive layer includes an electrically conductive layer providing a path region in which electric current is applied to the light source, and a heat dissipation conductive layer diffusing generated by the light source. Accordingly, it is possible to obtain effects such as rapid fabrication processes, inexpensive fabrication cost, facilitation of mass production, improvement of product yield, and promotion of heat dissipation. Furthermore, it is possible to obtain various effects that can be understood through configurations described in embodiments.
Abstract:
There is disclosed a display device comprising a display module, an outer case in which the display module is mounted and defining an internal space which is closed airtight from the outside, and an inner case coupled to the display module, wherein the inner case which partitions off the internal space into a first closed space having a rear surface of the display module exposed thereto and a second closed space having a front surface of the display module exposed thereto, and the first closed space is surrounded by the second closed space with respect to one cross section.
Abstract:
There is disclosed a display device comprising a light source unit, an optical sheet spaced a preset distance apart from a front of the light unit, a display panel spaced a preset distance apart from a front surface of the optical sheet, a module case configured to form at least one of a first space between the display panel and the optical sheet, a second space between the optical sheet and the light source unit and a third space in a rear surface of the light source unit, a through-hole formed in the module case and at least one of the first through third spaces, and an outer case configured to form an internal space partitioned off from an external space and a first closed passage located in the internal space by mounted the module case, wherein the first passage is located in the first closed passage.
Abstract:
The present invention relates to a display apparatus. According to an embodiment of the present invention, the display apparatus includes a case, a display inside the case, and a heat exchanger disposed on a rear surface of the case to perform heat exchange between an outside and an inside of the case, wherein a first space and a second space separated from each other are formed on a front surface and a rear surface of the display, respectively, and heat exchange is performed between the first space and the second space, wherein heat exchange with the second space and the outside is performed through the heat exchanger. Thereby, the temperature inside the display apparatus that is installable outside may be effectively cooled.
Abstract:
A light source module includes at least one light source and a body supporting the light source. The body includes a heat sink supporting the light source on a top surface thereof for absorbing heat from the light source and dissipating the heat to the outside, an electrically insulating layer provided on at least one surface of the heat sink, and a conductive layer provided on the insulating layer, the conductive layer being at least provided in a path region through which electric current is applied to the light source. The conductive layer includes light source connection parts supplying the electric current to the light source, and a light source mounting part disposed between the light source connection parts. One portion of the light source connection part is divided into at least two portions to be connected to each other. Accordingly, it is possible to obtain effects such as rapid fabrication processes, inexpensive fabrication cost, facilitation of mass production, improvement of product yield, and optimization of a conductive material.