Abstract:
A solar cell module includes a plurality of solar cells comprising a first solar cell and a second solar cell adjacent to each other; a conductive ribbon, wherein each of the plurality of solar cells comprises: a substrate; an emitter layer of positioned on the substrate; a plurality of finger electrodes formed in a first direction, each finger electrode being electrically connected to the emitter layer; and at least one first collector formed in a second direction crossing the first direction, the at least one first collector being electrically connected to the plurality of finger electrodes, wherein the conductive ribbon is attached to the at least one first collector in the second direction by a conductive adhesive, and wherein the conductive ribbon is attached on a collector region where the at least one first collector is formed and a deletion where the at least one first collector is not formed.
Abstract:
A post-processing apparatus of a solar cell that carries out a post-processing operation including a main period for heat-treating a solar cell having a semiconductor substrate while providing light to the solar cell, the post-processing apparatus including a main section to carry out the main period, wherein the main section comprises a first heat source unit to provide heat to the semiconductor substrate and a light source unit to provide light to the semiconductor substrate, the first heat source unit and the light source unit being positioned in the main section, and the light source unit comprises a light source constituted by a plasma lighting system (PLS).
Abstract:
A method of manufacturing a solar cell is discussed. The method of manufacturing the solar cell includes: forming a conductive region on a semiconductor substrate; forming an electrode connected to the conductive region; and post-processing the semiconductor substrate to passivate the semiconductor substrate. The post-processing of the semiconductor substrate comprises a main processing process for heat-treating the semiconductor substrate while providing light to the semiconductor substrate. A temperature of the main processing process is about 100° C. to about 800° C., and the temperature and light intensity of the main processing process satisfy Equation of 1750−31.8·T+(0.16)·T2≦I. Here, T is the temperate (° C.) of the main processing process, and I is the light intensity (mW/cm2) of the main processing process.
Abstract:
A solar cell can include a substrate of a first conductive type; an emitter layer of a second conductive type opposite the first conductive type, and positioned on the substrate; a plurality of finger electrodes formed in a first direction, each finger electrode being electrically connected to the emitter layer; a plurality of first collector regions; a plurality of first electrodes positioned in a plurality of first collector regions and extending in the first direction from the plurality of finger electrodes; a plurality of second electrodes positioned in the plurality of first collector regions and formed in a perpendicular direction crossing the first direction; a plurality of third electrodes positioned in the plurality of first collector regions, connecting two neighboring first electrodes of the plurality of first electrodes and formed in the perpendicular direction; and a plurality of deletions positioned in the plurality of first collector regions. Furthermore, one of the plurality of second electrodes is positioned between a pair of the plurality of first electrodes.
Abstract:
A solar cell module includes a plurality of solar cells comprising a first solar cell and a second solar cell adjacent to each other, a conductive ribbon electrically connecting the first solar cell and the second solar cell, a front member positioned on a front surface of the plurality of solar cells, a back member positioned on a back surface of the plurality of solar cells, a first protection film positioned between the front member and the plurality of solar cells, and a second protection film positioned between the back member and the plurality of solar cells.
Abstract:
A solar cell is disclosed. The solar cell includes a crystalline semiconductor substrate containing impurities of a first conductivity type, a front doped layer located on a front surface of the semiconductor substrate, a back doped layer located on a back surface of the semiconductor substrate, a front transparent conductive layer located on the front doped layer and having a first thickness, a front collector electrode located on the front transparent conductive layer, a back transparent conductive layer located under the back doped layer and having a second thickness, and a back collector electrode located under the back transparent conductive layer. The first thickness of the front transparent conductive layer and the second thickness of the back transparent conductive layer are different from each other, and a sheet resistance of the front transparent conductive layer is less than a sheet resistance of the back transparent conductive layer.
Abstract:
A post-processing apparatus of a solar cell is discussed. The post-processing apparatus carries out a post-processing operation including a main period for heat-treating a solar cell including a semiconductor substrate while providing light to the solar cell. The post-processing apparatus includes a main section to carry out the main period. The main section includes a first heat source unit to provide heat to the semiconductor substrate and a light source unit to provide light to the semiconductor substrate. The first heat source unit and the light source unit are positioned in the main section. The light source unit includes a light source constituted by a plasma lighting system (PLS).
Abstract:
Discussed is a solar cell including a semiconductor substrate including a base area and a doping area, a doping layer formed on the semiconductor substrate, the doping layer having a conductive type different from the doping area, a tunneling layer interposed between the doping layer and the semiconductor substrate, a first electrode connected to the doping area, and a second electrode connected to the doping layer.
Abstract:
A solar cell module includes a plurality of solar cells each including a substrate, an emitter region positioned at a back surface of the substrate, first electrodes electrically connected to the emitter region, second electrodes electrically connected to the substrate, a first current collector positioned at ends of the first electrodes, and a second current collector at ends of the second electrodes, and a first connector connecting a first current collector of a first solar cell of the plurality of solar cells to a second current collector of a second solar cell adjacent to the first solar cell. The first current collector of the first solar cell and the second current collector of the second solar cell each have a different polarity.