Abstract:
A thin film solar cell module according to an embodiment of the invention includes a substrate, a plurality of solar cells each including a first electrode on the substrate, a second electrode on the first electrode, and a photoelectric conversion unit between the first electrode and the second electrode, a ribbon positioned on each of first and second outermost solar cells among the solar cells, and a conductive adhesive part positioned between the first outermost solar cell and the ribbon and between the second outermost solar cell and the ribbon. The conductive adhesive part positioned between the second electrode of the first outermost solar cell and the ribbon includes a first connector, which is electrically connected to the first electrode, the photoelectric conversion unit, and the second electrode of the first outermost solar cell.
Abstract:
A solar cell and a method of manufacturing a solar cell are disclosed. The solar cell includes forming a first doped region of a first conductive type and a second doped region of a second conductive type opposite the first conductive type on a semiconductor substrate of the first conductive type; forming a passivation layer on the semiconductor substrate to expose a portion of each of the first and second doped regions; and forming a first electrode electrically connected to the first doped region and a second electrode electrically connected to the second doped region, wherein the forming of the first and second electrodes includes forming a metal seed layer directly contacting the first doped region and a metal seed layer directly contacting the second doped region, and forming a conductive layer on the metal seed layer of each of the first and second electrodes.
Abstract:
A solar cell includes a semiconductor substrate of a first conductive type and includes a first side and a second side, the second side having a textured structure formed on the entire second side; a first doped region of the first conductive type and a second doped region of a second conductive type on the first side; a first passivation layer on the first doped region and the second doped region and exposing a portion of a back surface of each of the first and second doped regions, the first passivation layer being formed of silicon nitride (SiNx), silicon dioxide (SiOx), or a combination thereof; a second passivation layer on the second side; an anti-reflection layer on the second passivation layer; and a first electrode electrically connected to the first doped region and a second electrode electrically connected to the second doped region.
Abstract:
A solar cell and a method for manufacturing the same are discussed. The solar cell can include a semiconductor layer containing first impurities and having a front surface and a back surface, the front surface being a light incident surface, a first portion on the back surface of the semiconductor layer, the first portion being more heavily doped with second impurities different from the first impurities than the semiconductor layer, and forming a p-n junction with the semiconductor layer, a second portion on the back surface of the semiconductor layer, the second portion being more heavily doped with the first impurities than the semiconductor layer, a third portion on the back surface of the semiconductor layer between the first portion and the second portion, a first electrode on the back surface of the semiconductor layer and connected to the first portion, a second electrode on the back surface of the semiconductor layer and connected to the second portion, and a passivation layer on the back surface of the semiconductor layer and contacting the first portion.
Abstract:
A solar cell and a method of manufacturing a solar cell are disclosed. The solar cell includes forming a first doped region of a first conductive type and a second doped region of a second conductive type opposite the first conductive type on a semiconductor substrate of the first conductive type; forming a passivation layer on the semiconductor substrate to expose a portion of each of the first and second doped regions; and forming a first electrode electrically connected to the first doped region and a second electrode electrically connected to the second doped region, wherein the forming of the first and second electrodes includes forming a metal seed layer directly contacting the first doped region and a metal seed layer directly contacting the second doped region, and forming a conductive layer on the metal seed layer of each of the first and second electrodes.