Abstract:
The present invention is a long gas barrier laminate including a base, a functional layer, a smoothing layer, and a gas barrier layer, the functional layer being stacked on one side of the base, the smoothing layer and the gas barrier layer being sequentially stacked on the other side of the base, and a coefficient of static friction between a surface of the functional layer that is situated opposite to the base and a surface of the gas barrier layer that is situated opposite to the base being 0.35 to 0.80; and a method for producing the long gas barrier laminate.
Abstract:
A thermoelectric conversion element that can efficiently make a temperature difference across a thermoelectric conversion material is provided. In the thermoelectric conversion element, on a first surface of a thermoelectric conversion module comprising a P-type thermoelectric element, an N-type thermoelectric element, and an electrode, a thermally conductive resin layer A and a thermally conductive resin layer B having a lower thermal conductivity than the thermally conductive resin layer A are provided in an alternating manner so as to be in direct contact with the first surface, and on a second surface on the opposite side of the first surface of the thermoelectric conversion module, a thermally conductive resin layer a and a thermally conductive resin layer b having a lower thermal conductivity than the thermally conductive resin layer a are provided in an alternating manner so as to be in direct contact with the second surface.
Abstract:
The present invention is a formed article sequentially comprising a base layer, a primer layer that includes a hydroxyl group-containing polymer, and a gas barrier layer, the gas barrier layer being formed of a material that includes at least an oxygen atom and a silicon atom, a surface layer part of the gas barrier layer having an oxygen atom content rate of 60 to 75%, a nitrogen atom content rate of 0 to 10%, and a silicon atom content rate of 25 to 35%, based on a total content rate of oxygen atoms, nitrogen atoms, and silicon atoms, and the surface layer part of the gas barrier layer having a film density of 2.4 to 4.0 g/cm3. According to the present invention, provided is a formed article, a method for producing the same, an electronic device member including the formed article, and an electronic device including the electronic device member, with an excellent gas barrier capability and excellent transparency.
Abstract translation:本发明是依次包含基层,包含含羟基聚合物的底漆层和气体阻隔层的成形制品,所述气体阻隔层由至少包含氧原子和硅的材料形成 原子,氧原子含有率为60〜75%,氮原子含有率为0〜10%,硅原子含有率为25〜35%的阻气层的表层部, 氧原子,氮原子和硅原子的含有率,阻气层的表层部分的膜密度为2.4〜4.0g / cm 3。 根据本发明,提供一种成型制品,其制造方法,包括成型制品的电子装置构件和包括该电子装置构件的电子装置,具有优异的阻气能力和优异的透明度。
Abstract:
The present invention provides: a thermoelectric conversion material capable of being produced in a simplified manner and at a lower cost and excellent in thermoelectric performance and flexibility, and a method for producing the material. The thermoelectric conversion material has, on a support, a thin film of a thermoelectric semiconductor composition containing thermoelectric semiconductor fine particles, a heat-resistant resin and an inorganic ionic compound. The method for producing a thermoelectric conversion material having, on a support, a thin film of a thermoelectric semiconductor composition containing thermoelectric semiconductor fine particles, a heat-resistant resin and an inorganic ionic compound includes a step of applying a thermoelectric semiconductor composition containing thermoelectric semiconductor fine particles, a heat-resistant resin and an inorganic ionic compound onto a support and drying it to form a thin film thereon, and a step of annealing the thin film.
Abstract:
The present invention provides: a gas barrier laminate comprising a base, a primer layer, and a gas barrier layer, the primer layer and the gas barrier layer being sequentially stacked on at least one side of the base, the primer layer having a modulus of elasticity at 90° C. of 1.6 GPa or more, and a coefficient of static friction between a surface of one side of the gas barrier laminate and a surface of the other side of the gas barrier laminate being 0.35 to 0.8; a method for producing the gas barrier laminate; an electronic device member comprising the gas barrier laminate; and an electronic device.
Abstract:
The present invention is a sealing sheet comprising at least a base resin layer and a sealing resin layer, the base resin layer having a microstructure that is provided to one surface of the base resin layer, the sealing resin layer being provided on a side of the base resin layer on which the microstructure is provided, and the microstructure having a protrusion that has a maximum difference in height (H) of 1 to 50 μm and is arranged two-dimensionally on the surface of the base resin layer, and an electronic device member, and an electronic device. The sealing sheet according to the invention exhibits an excellent gas barrier capability that suppresses or reduces the entry of a gas (e.g., water vapor) not only in the vertical direction, but also in the horizontal direction (from the edge) with respect to the surface of the sealing sheet.
Abstract:
The present invention is a gas barrier laminate comprising a base and a gas barrier unit, the gas barrier unit comprising at least two inorganic layers, at least one of the at least two inorganic layers being a silicon oxynitride layer, the silicon oxynitride layer including a composition-gradient region that has a thickness of 25 nm or more, the composition-gradient region being a region in which a content ratio of oxygen decreases and a content ratio of nitrogen increases in a thickness direction toward the base, and a ratio of the thickness of the composition-gradient region to the thickness of the entire silicon oxynitride layer being 0.15 or more. The present invention also relates to: an electronic device member that includes the gas barrier laminate, and an electronic device that includes the electronic device member. The present invention provides: a gas barrier laminate that exhibits a very high gas barrier capability and very high bendability, an electronic device member that includes the gas barrier laminate, and an electronic device that includes the electronic device member.
Abstract:
The present invention provides a thermoelectric conversion material capable of being produced in a simplified manner and at a low cost and excellent in thermoelectric conversion characteristics and flexibility, and provides a method for producing the material. The thermoelectric conversion material has, on a support, a thin film of a thermoelectric semiconductor composition containing thermoelectric semiconductor fine particles, a heat-resistant resin and an ionic liquid. The method for producing a thermoelectric conversion material having, on a support, a thin film of a thermoelectric semiconductor composition containing thermoelectric semiconductor fine particles, a heat-resistant resin and an ionic liquid comprises a step of applying a thermoelectric semiconductor composition containing thermoelectric semiconductor fine particles, a heat-resistant resin and an ionic liquid onto a support and drying it to form a thin film thereon, and a step of annealing the thin film.
Abstract:
The present invention provides: a gas barrier laminate comprising a base, a primer layer, and a gas barrier layer, the primer layer and the gas barrier layer being sequentially stacked on at least one side of the base, the primer layer having a modulus of elasticity at 90° C. of 1.6 GPa or more, and a coefficient of static friction between a surface of one side of the gas barrier laminate and a surface of the other side of the gas barrier laminate being 0.35 to 0.8; a method for producing the gas barrier laminate; an electronic device member comprising the gas barrier laminate; and an electronic device.
Abstract:
The present invention is a long gas barrier laminate including a base, a functional layer, a smoothing layer, and a gas barrier layer, the functional layer being stacked on one side of the base, the smoothing layer and the gas barrier layer being sequentially stacked on the other side of the base, and a coefficient of static friction between a surface of the functional layer that is situated opposite to the base and a surface of the gas barrier layer that is situated opposite to the base being 0.35 to 0.80; and a method for producing the long gas barrier laminate.