Abstract:
A cathode assembly for use in a plasma processing chamber is provided. A metal bowl that is grounded is provided. An insulator of a sealed porous or sealed honeycomb dielectric ceramic with an equivalent dielectric constant k
Abstract:
A substrate processing system includes a processing chamber including a substrate support to support a substrate. A coil includes at least one terminal. An RF source configured to supply RF power to the coil. A dielectric window is arranged on one surface of the processing chamber adjacent to the coil. A contamination reducer includes a first plate that is arranged between the at least one terminal of the coil and the dielectric window.
Abstract:
A plasma processing system for generating plasma to process a wafer. The plasma processing system includes a set of top coils for initiating the plasma, a set of side coils for affecting distribution of the plasma, and a chamber structure for containing the plasma. The chamber structure includes a chamber wall and a dielectric member. The dielectric member includes a top, a vertical wall, and a flange. The top is connected through the vertical wall to the flange, and is connected through the vertical wall and the flange to the chamber wall. The set of top coils is disposed above the top. The set of side coils surrounds the vertical wall. A vertical inner surface of the vertical wall is configured to be exposed to the plasma. The inner diameter of the vertical wall is smaller than the inner diameter of the chamber wall.
Abstract:
A lid assembly for a processing chamber in a substrate processing system includes a dielectric window. The dielectric window includes an upper portion having flat upper and lower surfaces. The lower surface is a plasma-facing surface of the dielectric window. A lower portion of the dielectric window is cylindrical and extends downward from the lower surface and an outer diameter of the lower portion at least one of is aligned with a gap between inner and outer coils arranged above the dielectric window and overlaps one of the inner and outer coils.
Abstract:
A drive circuit for providing RF power to a component of a substrate processing system includes a plasma source operating at a first frequency. A load includes the component of the substrate processing system. An impedance network connects the plasma source to the load. A current sensor senses current at an output of the plasma source. A voltage sensor senses voltage at the output of the plasma source. A controller includes a tuned frequency calculator configured to calculate a tuned frequency for the plasma source based on the voltage, the current, and a configuration of the impedance network and to adjust the first frequency based on the tuned frequency.
Abstract:
A direct drive circuit for providing RF power to a component of a substrate processing system includes a clock generator to generate a clock signal at a first frequency, a gate driver to receive the clock signal and a half bridge circuit. The half bridge circuit includes a first switch with a control terminal connected to the gate driver, a first terminal and a second terminal; a second switch with a control terminal connected to the gate driver, a first terminal connected to the second terminal of the first switch and an output node, and a second terminal; a first DC supply to supply a first voltage potential to the first terminal of the first switch; and a second DC supply to supply a second voltage potential to the second terminal of the second switch. The first voltage potential and the second voltage potential have opposite polarity and are approximately equal in magnitude.