Abstract:
This invention describes a process for treatment of feedstocks obtained from a renewable source implementing a catalyst that comprises at least one hydro-dehydrogenating metal that is selected from the group that is formed by the metals of group VIB and group VIII of the periodic table and a substrate that comprises at least one zeolite that has at least one series of channels whose opening is defined by a ring with 8 oxygen atoms modified by a) at least one stage for introducing at least one alkaline cation that belongs to group IA or IIA of the periodic table, b) a stage for treating said zeolite in the presence of at least one molecular compound that contains at least one silicon atom, c) at least one stage of partial exchange of said alkaline cations by NH4+ cations, and d) at least one heat treatment stage.
Abstract:
The invention relates to a process for the production of middle distillates from a paraffinic feedstock that is produced by Fischer-Tropsch synthesis, implementing a hydrocracking/hydroisomerization catalyst that comprises at least one hydro-dehydrogenating metal that is selected from the group that is formed by the metals of group VIB and group VIII of the periodic table and a substrate that comprises at least one zeolite that has at least one series of channels of which the opening is defined by a ring with 12 oxygen atoms modified by a) a stage for introducing at least one alkaline cation that belongs to group IA or IIA of the periodic table, b) a stage for treatment of said zeolite in the presence of at least one molecular compound that contains at least one silicon atom, c) at least one stage for partial exchange of said alkaline cations by NH4+ cations such that the remaining content of alkaline cations in the modified zeolite at the end of stage c) is such that the alkaline cation/aluminum molar ratio is between 0.2:1 and 0.01:1, and d) at least one heat treatment stage.
Abstract:
This invention describes a process for treatment of feedstocks obtained from a renewable source implementing—in one hydroisomerization stage—a catalyst that comprises at least one hydro-dehydrogenating metal that is selected from the group that is formed by the metals of group VIB and group VIII of the periodic table and a substrate that comprises at least one dealuminified Y zeolite that has an initial overall atomic ratio of silicon to aluminum of between 2.5 and 20, a fraction by weight of an initial extra-network aluminum atom that is greater than 10%, relative to the total mass of aluminum that is present in the zeolite, an initial mesopore volume that is measured by nitrogen porosimetry that is greater than 0.07 ml·g−1, and an initial crystalline parameter ao of the unit cell mesh of between 24.38 Å and 24.30 Å, whereby said zeolite is modified by a) a basic treatment stage that consists of the mixing of said dealuminified Y zeolite with a basic aqueous solution, and at least one heat treatment stage c).
Abstract:
The present invention describes a hydrocracking and/or hydrotreatment process using a catalyst comprising an active phase containing at least one hydrogenating/dehydrogenating component selected from the group VIB elements and the non-precious elements of group VIII of the periodic table, used alone or in a mixture, and a support comprising at least one dealuminated zeolite Y having an overall initial atomic ratio of silicon to aluminium between 2.5 and 20, an initial weight fraction of extra-lattice aluminium atoms greater than 10%, relative to the total weight of aluminium present in the zeolite, an initial mesopore volume measured by nitrogen porosimetry greater than 0.07 ml·g−1 and an initial crystal lattice parameter a0 between 24.38 Å and 24.30 Å, said zeolite being modified by a) a stage of basic treatment comprising mixing said dealuminated zeolite Y with a basic aqueous solution, and at least one stage c) of thermal treatment.
Abstract:
The present invention describes a method for hydrocracking and/or hydrotreating hydrocarbon-containing feeds using a catalyst comprising at least one hydro-dehydrogenizing metal selected from the group made up of group VIB and non-noble group VIII metals of the periodic table and a support comprising at least one zeolite having at least pore openings containing 12 oxygen atoms, modified by a) at least a stage of introducing at least one alkaline cation belonging to groups IA or IIA of the periodic table, b) a stage of treating said zeolite in the presence of at least one molecular compound containing at least one silicon atom, c) at least one stage of partial exchange of said alkaline cations by NH4+ cations in such a way that the proportion of alkaline cations remaining in the modified zeolite at the end of stage c) is such that the alkaline cation/aluminium molar ratio ranges between 0.2:1 and 0.01:1, and d) at least one thermal treatment stage.
Abstract:
The invention describes a porous composite material that comprises a porous substrate based on a refractory inorganic oxide in which said substrate has a zeolite crystal content that is less than 25% by mass, whereby said crystals are dispersed homogeneously in the pores of said substrate, and the distribution coefficient that is measured by Castaing microprobe is between 0.75 and 1.25, and in which the total pore volume of said substrate represents at least 40% of the initial total pore volume of the substrate, and the mean diameter of the pores represents at least 50% of the mean diameter of the pores of the initial substrate, its process for preparation and its use as catalyst in the hydrocarbon feedstock conversion reactions.