摘要:
A method and system for enhanced demolding of injection molded optical devices are disclosed. In one embodiment the system includes a metal moldplate without a coat of release layer and a curing device that generates high intensity pulses of UV light. The method includes: providing a moldplate made of a predetermined moldplate material; directly injecting optical material into cavities of a moldplate without a release layer; rapidly curing the injected optical material with high intensity pulses of UV light such that a predetermined optical device is formed; and separating the thus formed optical device from the cavities of the moldplate due to a differential thermal expansion between the optical device material and the moldplate material.
摘要:
A method for data security policy enforcement including inspecting incoming and outgoing data packets from a server computing device for attributes in accordance with a data security policy, processing the data packets in accordance with the security policy based on the inspected attributes, and routing the data packets in accordance with the security policy based on the inspected attributes, wherein incoming and outgoing data from the server computing device composed of the data packets is processed and routed in accordance with the security policy on a per-packet basis. A system and computer program product is also provided.
摘要:
Methods and systems for fabrication of injection molded optical components. In one embodiment, a moldplate with cavities receives injected optical material within walls of the cavities. The cavities are designed with a geometric profile approximately corresponding to a optical profile of an optical element to be formed therein. When molten optical material is injected into the cavities of the moldplate, the injected optical material forms a meniscus due to surface tension between the optical material and the wall of the cavities. The meniscus thus provides a shape corresponding to the predetermined optical profile. The optical material is then rapidly cured with actinic radiation, and a desired optical element with high-precision dimensions is formed within the cavities of the moldplate. In some embodiments, the moldplate is spun such that the meniscus is adjusted to match the predetermined optical profile within a certain tolerance.
摘要:
Methods and systems for fabrication of injection molded optical components are disclosed. In one embodiment, a moldplate having one or more cavities is configured to receive injected optical material within walls of the cavities. The cavities are designed with a predetermined geometric profile approximately corresponding to a predetermined optical profile of an optical element to be formed therein. When molten optical material is injected into the cavities of the moldplate, the injected optical material forms a meniscus due to surface tension between the optical material and the wall of the cavities. The meniscus thus provides a shape corresponding to the predetermined optical profile. The optical material is then rapidly cured with actinic radiation, and a desired optical element with high-precision dimensions is formed within the cavities of the moldplate. In some embodiments, the moldplate is spun around a spin axis such that the meniscus is adjusted to match the predetermined optical profile within a certain tolerance.
摘要:
Injection molding of monolithically integrated optical components is disclosed. In one embodiment, an injection molding system includes a moldplate having an array of specially designed cavities. In at least one cavity, different types of photo-curable optical materials are injected in an ordered sequence. In a first instance, a lens material is injected into the cavity and subsequently cured to form a predetermined lens element at the base of the cavity. In a second instance, a filter material is injected into the cavity above the already formed lens element. The filter material is also cured, and an optical filter is formed stacked onto the lens element and contained within sidewall of the cavity. In this manner, a complex optical component having an optical filter automatically aligned with, and monolithically integrated into, a lens element is readily formed in a single injection molding process.
摘要:
Injection molding of monolithically integrated optical components is disclosed. In one embodiment, an injection molding system includes a moldplate having an array of specially designed cavities. In at least one cavity, different types of photo-curable optical materials are injected in an ordered sequence. In a first instance, a lens material is injected into the cavity and subsequently cured to form a predetermined lens element at the base of the cavity. In a second instance, a filter material is injected into the cavity above the already formed lens element. The filter material is also cured, and an optical filter is formed stacked onto the lens element and contained within sidewall of the cavity. In this manner, a complex optical component having an optical filter automatically aligned with, and monolithically integrated into, a lens element is readily formed in a single injection molding process.
摘要:
A method and system for enhanced demolding of injection molded optical devices are disclosed. In one embodiment the system includes a metal moldplate without a coat of release layer and a curing device that generates high intensity pulses of UV light. The method includes: providing a moldplate made of a predetermined moldplate material; directly injecting optical material into cavities of a moldplate without a release layer; rapidly curing the injected optical material with high intensity pulses of UV light such that a predetermined optical device is formed; and separating the thus formed optical device from the cavities of the moldplate due to a differential thermal expansion between the optical device material and the moldplate material.
摘要:
In a system for writing a plurality of information tracks between adjacent portions of a reference track on a rotatable medium, advantage is taken of the fact that laser beam dithering a cross an edge of a reference track produces signals which are analyzable to determine much more exact radial positions. A pattern of bits is written on the medium with a known spacing between bits. This may be at the time of disk manufacture or later. As these bits are being read, a clock is started along with a bit counter. At this time, a precise determination is made of the radial position at which the read bits are present. From these values, angular and/or linear velocities are computed and stored on the medium. Collected over time, this information is useful for determining aging characteristics of the drive mechanism for the medium. Also, even one-time collection of this speed information is useful for determining the speed at which data was written so that the drive speed can be accurately controlled for read operations, for example.
摘要:
An apparatus is provided for varying the direction which a control laser beam impinges on a rotatable storage medium. The reflected control beam is thus modulated by surfaces aspects of the medium such as by embedded reference tracks. This reflected light signal is converted to an electrical signal which is analyzable to determine vertical alignment particularly with respect to the orthognal direction. In one embodiment, the apparatus comprises a rotating cylinder in which a lens is disposed in a canted orientation so that the optical axis of the lens is not exactly aligned with the axis of the cylinder about which rotation occurs.
摘要:
An apparatus is provided for reading an information track, on a writable disk with reference tracks, almost immediately after the information track has been written. Precise control of the positioning of the laser source, which provides the parallel beams for writing and reading, is accomplished by an analysis of the electrical signal produced by a reference beam reflected from an edge of a reference track on the disk/medium. Oscillatory movement of this beam across a track edge produces the desired electrical signal for precise position determination and, hence, for position control.