摘要:
A matrix of cluster connectors for switching and interconnecting large numbers of optical fiber and/or electrical conductors (such as coaxial lines) to a module used in computers, communications and related applications. The matrix of pluggable cluster connector receptacles is located on a major surface of a module, such as a ceramic multi-chip module or a thin film silicon chip carrier module. A semiconductor wafer is fabricated with a matrix of angled slots fabricated to form the matrix of receptacles. The wafer is a major surface of the module, and may have another opening for chips fastened to the module surface below the wafer. Each angled slot engages an end of a plug member to align any optical fiber ends contained in the cluster held by the plug with a corresponding lens/light signal transducer in the module. Instead, a light transducer may be contained in the plug to provide electrical signals to a contact of the plug mating with a contact deposited on the wall of the engaged slot, which also engage contacts connected to coaxial lines in the cluster.
摘要:
Obtains a large increase in the number of fiber optic inputs/output (I/O) lines connectable to a module by enabling edge connection of multiple clusters of optical fibers to be connected around a module. Each connector connects a cluster of optical fibers in a small dimension of space on the module. Many distinct pluggable connectors may be provided along one or more edges of a module. The optical-fiber cluster connectors are embedded in indentations around the edges of a multilayer glass/ceramic (MLGC) multi-chip module (MCM), which may be a thermal conduction module (TCM), containing an integrated photonic receiver and/or transmitter for each fiber. Each connector supports a large number of fibers from a single cable, and a large number of connectors may be provided in a single module. Easy plugging and unplugging is obtained for each connector without interferring with any existing cooling apparatus or I/O pins of the module. Receptacle and plug assemblies which hold the fibers in respective key V-grooves etched in silicon members which carry and interlock each fiber in each receptacle. Alignment and locking means is provided in each connector for aligning a plug's array of fibers with corresponding receptacle fibers in one or more angled groove(s) in a receiving receptacle. Thermal coefficients of expansion match between the silicon receptacle and the glass-ceramic substrate to guarantee the preservation of opto-mechanical alignments.
摘要:
Enables a large number of pluggable-array connectors to be used with a multi-chip module (MCM) by using a connector technique that does not require a significant amount of available surface area on a module. The array connectors provide a large increase in the input/output (I/O) capacity of a module. Each of the connectors has a receptacle supported by a frame around the module, and short flexible transmission lines connect the receptacle to the module. A plug connects a cluster (array) of external transmission lines, which may be optical and/or electrical transmission lines operating in parallel. Optical transmission lines may have optical/electrical transducers mounted on either the frame or module. Frame mounting of optical transducers with a connector receptacle enables a connector to transfer only electrical signals between the connector and the module, regardless of a mix of optical and electrical transmission lines to the same connector plug.
摘要:
A method and system for enhanced demolding of injection molded optical devices are disclosed. In one embodiment the system includes a metal moldplate without a coat of release layer and a curing device that generates high intensity pulses of UV light. The method includes: providing a moldplate made of a predetermined moldplate material; directly injecting optical material into cavities of a moldplate without a release layer; rapidly curing the injected optical material with high intensity pulses of UV light such that a predetermined optical device is formed; and separating the thus formed optical device from the cavities of the moldplate due to a differential thermal expansion between the optical device material and the moldplate material.
摘要:
A method for data security policy enforcement including inspecting incoming and outgoing data packets from a server computing device for attributes in accordance with a data security policy, processing the data packets in accordance with the security policy based on the inspected attributes, and routing the data packets in accordance with the security policy based on the inspected attributes, wherein incoming and outgoing data from the server computing device composed of the data packets is processed and routed in accordance with the security policy on a per-packet basis. A system and computer program product is also provided.
摘要:
Methods and systems for fabrication of injection molded optical components. In one embodiment, a moldplate with cavities receives injected optical material within walls of the cavities. The cavities are designed with a geometric profile approximately corresponding to a optical profile of an optical element to be formed therein. When molten optical material is injected into the cavities of the moldplate, the injected optical material forms a meniscus due to surface tension between the optical material and the wall of the cavities. The meniscus thus provides a shape corresponding to the predetermined optical profile. The optical material is then rapidly cured with actinic radiation, and a desired optical element with high-precision dimensions is formed within the cavities of the moldplate. In some embodiments, the moldplate is spun such that the meniscus is adjusted to match the predetermined optical profile within a certain tolerance.
摘要:
Methods and systems for fabrication of injection molded optical components are disclosed. In one embodiment, a moldplate having one or more cavities is configured to receive injected optical material within walls of the cavities. The cavities are designed with a predetermined geometric profile approximately corresponding to a predetermined optical profile of an optical element to be formed therein. When molten optical material is injected into the cavities of the moldplate, the injected optical material forms a meniscus due to surface tension between the optical material and the wall of the cavities. The meniscus thus provides a shape corresponding to the predetermined optical profile. The optical material is then rapidly cured with actinic radiation, and a desired optical element with high-precision dimensions is formed within the cavities of the moldplate. In some embodiments, the moldplate is spun around a spin axis such that the meniscus is adjusted to match the predetermined optical profile within a certain tolerance.
摘要:
Injection molding of monolithically integrated optical components is disclosed. In one embodiment, an injection molding system includes a moldplate having an array of specially designed cavities. In at least one cavity, different types of photo-curable optical materials are injected in an ordered sequence. In a first instance, a lens material is injected into the cavity and subsequently cured to form a predetermined lens element at the base of the cavity. In a second instance, a filter material is injected into the cavity above the already formed lens element. The filter material is also cured, and an optical filter is formed stacked onto the lens element and contained within sidewall of the cavity. In this manner, a complex optical component having an optical filter automatically aligned with, and monolithically integrated into, a lens element is readily formed in a single injection molding process.
摘要:
Injection molding of monolithically integrated optical components is disclosed. In one embodiment, an injection molding system includes a moldplate having an array of specially designed cavities. In at least one cavity, different types of photo-curable optical materials are injected in an ordered sequence. In a first instance, a lens material is injected into the cavity and subsequently cured to form a predetermined lens element at the base of the cavity. In a second instance, a filter material is injected into the cavity above the already formed lens element. The filter material is also cured, and an optical filter is formed stacked onto the lens element and contained within sidewall of the cavity. In this manner, a complex optical component having an optical filter automatically aligned with, and monolithically integrated into, a lens element is readily formed in a single injection molding process.
摘要:
A method and system for enhanced demolding of injection molded optical devices are disclosed. In one embodiment the system includes a metal moldplate without a coat of release layer and a curing device that generates high intensity pulses of UV light. The method includes: providing a moldplate made of a predetermined moldplate material; directly injecting optical material into cavities of a moldplate without a release layer; rapidly curing the injected optical material with high intensity pulses of UV light such that a predetermined optical device is formed; and separating the thus formed optical device from the cavities of the moldplate due to a differential thermal expansion between the optical device material and the moldplate material.