摘要:
A tethered charging and recharging (TCR) drone assembly system is provided. The TCR drone assembly system may be a nurse vehicle-based, a master/slave vehicle-based, a stationary structure and/or free standing TCR drone assembly system. The TCR drone assembly system is especially suitable for use on moving vehicles, for example, a self-propelled conventional type vehicle operated by an operator and/or autonomous or slave autonomous vehicle with no operator on board. The TRC drone assembly system may quickly couple and may deliver energy charges, recharges or other types of power propellants to vehicles while the vehicles are stationary or in motion. The assemblies are especially suitable for providing power to vehicles when only limited downtime of the vehicles is desired. The assemblies are suitable for use in, for example, the agricultural, construction, defense or other industries.
摘要:
A plant by plant harvester is provided. The harvester may harvest and analyze single or double rows of crops. The single row harvester may have a first and a second guide unit which surrounds a single row of a crop and directs the single row of the crop into a sheller, picker, or grain/fruit separation unit. In an alternative embodiment of the device, the device may harvest two rows of crops. A GPS or any other location positioning device having an antenna is secured to the top of the main frame and allows the harvester to be remotely controlled. A hopper, container or holding bin may, in real-time, calculate the weight of the separated products. A plurality of sensors may be located on or near the first and/or second guide unit which allows the harvester to, for example, capture data related to the crop at the single plant level.
摘要:
A plant by plant harvester is provided. The harvester may harvest and analyze single or double rows of crops. The single row harvester may have a first and a second guide unit which surrounds a single row of a crop and directs the single row of the crop into a sheller, picker, or grain/fruit separation unit. In an alternative embodiment of the device, the device may harvest two rows of crops. A GPS or any other location positioning device having an antenna is secured to the top of the main frame and allows the harvester to be remotely controlled. A hopper, container or holding bin may, in real-time, calculate the weight of the separated products. A plurality of sensors may be located on or near the first and/or second guide unit which allows the harvester to, for example, capture data related to the crop at the single plant level.
摘要:
A tethered charging and recharging (TCR) drone assembly system is provided. The TCR drone assembly system may be a nurse vehicle-based, a master/slave vehicle-based, a stationary structure and/or free standing TCR drone assembly system. The TCR drone assembly system is especially suitable for use on moving vehicles, for example, a self-propelled conventional type vehicle operated by an operator and/or autonomous or slave autonomous vehicle with no operator on board. The TRC drone assembly system may quickly couple and may deliver energy charges, recharges or other types of power propellants to vehicles while the vehicles are stationary or in motion. The assemblies are especially suitable for providing power to vehicles when only limited downtime of the vehicles is desired. The assemblies are suitable for use in, for example, the agricultural, construction, defense or other industries.
摘要:
An autonomous spraying platform is provided. The autonomous spraying platform has a main frame platform supported by a first and a second wheel in tandem. Supported by the main frame platform and extended perpendicular thereto are extended booms having multiple movable and/or telescoping arms which touch the ground on each side by small wheels for balance and sensing of the ground. Liquids, foams or powders, which may carry pesticides, herbicides, insecticides, fungicides, fertilizers or other pro-growth ingredients, may be dispensed across the bottom edge of the extended booms. The main frame platform may be controlled locally by sensors utilizing GPS (or other positioning technology) or remotely by a computer or even alive operator. The device may allow for real-time precise delivery of pro-growth materials to plants.
摘要:
A system for collecting a harvested product is provided. The system may include a continuously constructed flexible container for collecting the harvested product. For instance, the continuously constructed flexible container is a continuous sheet of flexible material such as plastic. A sealing device may be included within the system which is operationally coupled to the continuously constructed flexible container to allow the container to be sealed in discrete increments. Further, the system includes a traceability device operationally coupled to each of the discrete increments of the continuously flexible container to allow the harvested product included within each increment to be tracked. The use of the continuously constructed flexible container allows the harvested product to be collected continuously.
摘要:
An improvement in an apparatus for processing an agricultural crop, which processing apparatus has structure for separating waste from a crop to provide a clean yield product and an elevator for raising and delivering clean yield product to a point of use such as a bin, or the like. The improvement is a structure including an actuating arm for producing a signal indicative of a pressure being applied to the actuating arm. The signal producing structure is mounted to the crop processing apparatus so that the actuating arm intercepts clean yield product discharging from the elevator. This pressure value can be correlated with other data, i.e. combine width, elevator speed, forward speed of the crop processing apparatus, material density (lbs/bundle) to generate a flow rate value that can be continuously plotted to generate a yield map for a field.
摘要:
A system for collecting a harvested product is provided. The system may include a continuously constructed flexible container for collecting the harvested product. For instance, the continuously constructed flexible container is a continuous sheet of flexible material such as plastic. A sealing device may be included within the system which is operationally coupled to the continuously constructed flexible container to allow the container to be sealed in discrete increments. Further, the system includes a traceability device operationally coupled to each of the discrete increments of the continuously flexible container to allow the harvested product included within each increment to be tracked. The use of the continuously constructed flexible container allows the harvested product to be collected continuously.
摘要:
A system for collecting a harvested product is provided. The system may include a continuously constructed flexible container for collecting the harvested product. For instance, the continuously constructed flexible container is a continuous sheet of flexible material such as plastic. A sealing device may be included within the system which is operationally coupled to the continuously constructed flexible container to allow the container to be sealed in discrete increments. Further, the system includes a traceability device operationally coupled to each of the discrete increments of the continuously flexible container to allow the harvested product included within each increment to be tracked. The use of the continuously constructed flexible container allows the harvested product to be collected continuously.
摘要:
A control system for controlling a vehicle system at least partly in response to an anticipated condition along the vehicle's course of travel is disclosed herein. The vehicle includes a drive train powered by an engine, and the anticipated condition may affect engine load. The control system includes a location signal generation circuit for receiving positioning signals and generating location signals therefrom, a memory circuit for storing a predetermined geo-referenced map including map data indicative of anticipated conditions along the course of travel which may affect engine load, and a control circuit. The control circuit predicts the anticipated condition using at least the location signals and the map data, generates a control signal based at least upon the anticipated condition, and applies the control signal to the vehicle system. The prediction of the anticipated condition can be calibrated using results of a comparison between a sensed actual condition and an earlier-predicted anticipated condition. Anticipated conditions include anticipated slopes, crop conditions and soil conditions. Crop conditions can be anticipated using aerial photography. The controlled vehicle systems include speed actuators, transmissions, crop processors, energy exchangers, clutches and differential locks.