Abstract:
A method is provided for operating a materials handling vehicle comprising: monitoring, by a processor, vehicle acceleration in a direction of travel of the vehicle during a manual operation by an operator of the vehicle when the vehicle is traveling in a first vehicle orientation; collecting and storing, by the processor, data related to the monitored vehicle acceleration; receiving, by the processor, a request to implement a semi-automated driving operation; calculating, by the processor, a maximum vehicle acceleration based on acceleration data comprising the stored data, wherein the data related to the monitored vehicle acceleration used in calculating the maximum vehicle acceleration comprises only the vehicle acceleration data in the direction of travel of the vehicle collected when the vehicle is traveling in the first vehicle orientation. Based at least in part on the maximum vehicle acceleration, controlling, by the processor, implementation of the semi-automated driving operation.
Abstract:
The yoke module is including wherein an elongated USB power cable, one or more yoke module sections accommodating access for the USB power cable and wire connectors to be threaded through one or more slotted openings and to exit out the top yoke module section, a first connection method to connect with the drive motor's lead cable harness directly to the USB power cable, a method to conceal and protect the drive motor's lead cable harness and the USB power cable by means of a coupling enclosure and yoke sleeve enclosure achieved through the yoke module's fabrication process. The yoke module also comprises a method for USB power cable to provide electricity power to drive a motorized wheel. The yoke module system comprises a second connection method for the yoke module to plug into auxiliary components including; a battery, a computer control system, and sensors for motion stability.
Abstract:
A driver assistance system in a motor vehicle includes a map-based detection system for detecting upcoming events which lead to a change in the maximum permissible speed, and a functional unit which, when a relevant upcoming event is detected by the map-based detection system, at a defined time before the upcoming event is reached, initiates an output of a request indication to permit an automatic adjustment of the current maximum permissible speed to a new maximum permitted speed. When a manually triggered authorization confirmation or detected rejection is identified the functional unit, initiates a withdrawal of the request indication. The functional unit is configured to prompt a withdrawal of the output of the request indication after passing the relevant upcoming event when there is no detected authorization confirmation or no detected rejection.
Abstract:
The present invention is an electric mobility vehicle such as a powered knee walker, scooter, bicycle and a multi-passenger vehicle comprising a unique steering column assembly capable of being manually steered also autonomously steered by means of steering actuators. The vehicle user can select a manual drive mode option to operate the vehicle physically or the user can select an autonomous drive mode each mode allows the vehicle to operate more efficiently both indoors and outdoors. The vehicle is configured with a platform for standing, sitting and leaning, and the framework is configured with a front and rear drive system, the front drive system incorporates the steering column and one or more steering actuator which control front and rear propulsion systems. The propulsion includes; a DC powered truck module, a fork module, or a cantilever module, and each respectively comprise a drive motor, brake, sensor and accelerometers for self-balancing control. The steering column controlling system is the main driving force of the vehicle and utilizes wireless interface communication linked to short range proximity sensors including LIDAR or laser sensor unit, cameras, and handlebar throttles comprising grip force sensor to control speed and braking, and other vehicle devices. The steering column and framework contain an array of USB power cabling interconnecting electrical components to an IO communication network and to an electrical control system and battery bank.
Abstract:
Apparatuses, methods and systems comprising vehicle gear shifting controls are disclosed. One embodiment is a method comprising operating a vehicle system comprising an engine structured to output torque, a transmission structured to receive torque from the engine and output torque to one or more ground contacting wheels, and an electronic control system in operative communication with the engine and the transmission. The electronic control system is structured to estimate an engine load parameter using one or more dynamically determined vehicle operating parameters, set an engine load threshold using the engine load parameter, evaluate a current engine load relative to the engine load threshold, and selectably perform an operation to control or influence a shifting event in response to the evaluation.
Abstract:
Method for regulating travel of a golf cart or all-terrain vehicle includes determining, using an electronic controller on the golf cart or all-terrain vehicle, seatbelt usage for each occupant of the golf cart or all-terrain vehicle, and determining, using the electronic controller, whether the golf cart or all-terrain vehicle is travelling on or about to travel on a road which permits higher speed operation of golf carts and all-terrain vehicles. When it is determined that the golf cart or all-terrain vehicle is travelling on a road which permits higher speed operation of golf carts and all-terrain vehicles, travel of the golf cart or all-terrain vehicle is enabled on the road which permits higher speed operation only when all occupants are determined to be properly wearing seatbelts or the seatbelts are determined to be in buckled and/or spooled-out a set distance or within a distance range.
Abstract:
A robotic omniwheel system for motion comprising various components such as in wheel motor assemblies with brake, supportive hub and axle assemblies, strut and yoke assemblies for suspension, a motor device having controller for steering motion, a motorized universal joint for rocking motion, an active transmission rod to uniquely engage lift and expansion which are managed by a drive logic system comprising status control system and sensor array, laser radar, GPS, and as well as manual navigational control system including wireless remote control for communication and monitoring motion states for transport and to monitor power levels therein. As well, an electrical system includes battery array to furnish power for the robotic omniwheel array assemblies and to the electrical components via power cable. Accordingly, a navigational system can control components by a cell phone device and by a remote controller device with toggle switches, and also by a remote control panel having touch screen monitor and thusly allowing the robotic omniwheel array to move about in a holonomic manner for transport.
Abstract:
Based on a parking frame certainty degree indicative of a degree of certainty about a presence is a parking frame in the travel direction of the vehicle and a parking frame entering certainty degree indicative of a degree of certainty about whether the vehicle enters the parking frame, a total certainty degree indicative of a total degree of the certainty of the parking frame certainty degree and the parking frame entering certainty degree is calculated. Acceleration of the vehicle is controlled depending on a manipulation amount of an accelerator pedal manipulated by a drive to instruct a driving force and is suppressed in a lower suppression degree when the total certainty degree is lower than when the total certainty degree is higher. Furthermore, the acceleration of the vehicle is suppressed in the suppression degree decreased depending on the travel direction of the vehicle.
Abstract:
In a target lead-vehicle designating apparatus, a vehicle tracking ECU compares surrounding vehicle information acquired through an inter-vehicle communication unit and vehicle information on preceding vehicles detected by a radar device to designate a target lead-vehicle. The communicated speed of the other vehicles and the detected speed of the preceding vehicles are compared in terms of velocity component in the travel direction of a host vehicle to identify the target lead-vehicle. Accordingly, the target lead-vehicle may be accurately identified even if the target lead-vehicle is close to other vehicles.
Abstract:
A traffic information providing system includes a traffic information collector configured to collect information on traffic flow. A traffic information generator is configured to detect a speed change point at which an average vehicle speed on a road changes based on the information on the traffic flow and to generate traffic information including position information on the speed change point and a target speed after a vehicle passes the speed change point. A traffic information provider is configured to transmit the traffic information to a vehicle controller for automatically controlling acceleration or deceleration of the vehicle based on the target speed.