摘要:
An improved apparatus and method for capturing and analyzing the end-tidal portion of an exhalation. The CO2 level of air drawn into the system (10) is monitored to distinguish inhalation and exhalation of breath. Upon detection of a decrease in the CO2 level in the air drawn into the system (10), indicating a transition between exhalation and inhalation a pair of flow selector valves (26, 28) are operated to capture the end-tidal volume of air drawn into the system (10) immediately prior to the detection of the decrease in the CO2 level. Incoming air is diverted around the captured volume of air, and the CO2 levels are continually monitored to ensure that the captured volume of air corresponds to the end-tidal portion of an exhalation. Once the captured volume of air is positively identified as the end-tidal portion of an exhalation, the captured volume is routed through a gas analyzer (44) for analysis of one or more predetermined gas levels.
摘要:
An improved apparatus and method for capturing and analyzing the end-tidal portion of an exhalation. The CO2 level of air drawn into the system (10) is monitored to distinguish inhalation and exhalation of breath. Upon detection of a decrease in the CO2 level in the air drawn into the system (10), indicating a transition between exhalation and inhalation a pair of flow selector valves (26, 28) are operated to capture the end-tidal volume of air drawn into the system (10) immediately prior to the detection of the decrease in the CO2 level. Incoming air is diverted around the captured volume of air, and the CO2 levels are continually monitored to ensure that the captured volume of air corresponds to the end-tidal portion of an exhalation. Once the captured volume of air is positively identified as the end-tidal portion of an exhalation, the captured volume is routed through a gas analyzer (44) for analysis of one or more predetermined gas levels.
摘要:
An improved apparatus and method for capturing and analyzing the end-tidal portion of an exhalation. The CO2 level of air drawn into the system (10) is monitored to distinguish inhalation and exhalation of breath. Upon detection of a decrease in the CO2 level in the air drawn into the system (10), indicating a transition between exhalation and inhalation a pair of flow selector valves (26, 28) are operated to capture the end-tidal volume of air drawn into the system (10) immediately prior to the detection of the decrease in the CO2 level. Incoming air is diverted around the captured volume of air, and the CO2 levels are continually monitored to ensure that the captured volume of air corresponds to the end-tidal portion of an exhalation. Once the captured volume of air is positively identified as the end-tidal portion of an exhalation, the captured volume is routed through a gas analyzer (44) for analysis of one or more predetermined gas levels.
摘要:
A system and method for performing monitoring of anesthesia and sedation in a patient includes a patient sensor integrating EEG, pulse oximetry, ECG, and AEP signal inputs, integrated analog hardware, digital hardware, and a digital signal processing system that executes a selected algorithm to process received signals representative of a patient's condition, and which generates an index value associated with said patient condition.
摘要:
A machine-learning based artificial intelligence device for finding an estimate of patent quality, such as patent lifetime or term is disclosed. Such a device may receive a first set of patent data and generate a list of binary classifiers. A candidate set of binary classifiers may be selected and using a heuristic search, for example an artificial neural network (ANN), a genetic algorithm, a final set of binary classifiers is found by maximizing iteratively a yield according to a cost function, such an area under a curve (AUC) of a receiver operating characteristic (ROC). The device may then receive patent information for a target patent and report an estimate of patent quality according to the final set of binary classifiers.
摘要:
A method and apparatus for de-noising weak bio-signals having a relatively low signal to noise ratio utilizes an iterative process of wavelet de-noising a data set comprised of a new set of frames of wavelet coefficients partially generated through a cyclic shift algorithm. The method preferably operates on a data set having 2N frames, and the iteration is performed N−1 times. The resultant wavelet coefficients are then linearly averaged and an inverse discrete wavelet transform is performed to arrive at the de-noised original signal. The method is preferably carried out in a digital processor.
摘要:
A method and apparatus for utilizing the benefits of encoded signal transmission and reception to enhance the performance of medical testing devices (100) adapted to evoke and measure biological response signals such as auditory evoked potentials (AEP), and the auditory brainstem response (ABR) signals in particular. Auditory stimuli, such as clicks, are presented to the ear of a human patient, in a predetermined encoded sequence, resulting in the generation of auditory responses and bio-electric response signals in the human patient. These response signals from the patient are acquired and observed, and are processed according to the predetermined encoded sequence in which the auditory stimuli were presented to the patient's ear in order to extract the desired auditory evoked potential signals or ABR signals.
摘要:
A medical screening device (100) configured to measure and monitor combinations of blood chemistry, breath gasses, and bioelectrical signals such as evoked auditory signals and EEG signals associated with human auditory testing to facilitate detection of abnormal medical conditions or disorders in human patients by providing a cumulative index representative of at least one detected medical disorder in the human patient.
摘要:
A method and apparatus for utilizing the benefits of encoded signal transmission and reception to enhance the performance of medical testing devices (100) adapted to evoke and measure biological response signals such as auditory evoked potentials (AEP), and the auditory brainstem response (ABR) signals in particular. Auditory stimuli, such as clicks, are presented to the ear of a human patient, in a predetermined encoded sequence, resulting in the generation of auditory responses and bio-electric response signals in the human patient. These response signals from the patient are acquired and observed, and are processed according to the predetermined encoded sequence in which the auditory stimuli were presented to the patient's ear in order to extract the desired auditory evoked potential signals or ABR signals.
摘要:
A method and apparatus for providing objective assessment of the brain state of a subject using a field portable device. The method includes placing an electrode set coupled to a handheld base unit on the subject's head, acquiring electrical brain signals from the subject through the electrode set, processing the acquired electrical brain signals using a feature extraction algorithm, classifying the extracted features into brain states, computing brain abnormality indices reflecting the probability of correct classification of brain state, and graphically displaying the classification result and the abnormality indices on the handheld base unit.