摘要:
A method and apparatus for providing objective assessment of the brain state of a subject using a field portable device. The method includes placing an electrode set coupled to a handheld base unit on the subject's head, acquiring electrical brain signals from the subject through the electrode set, processing the acquired electrical brain signals using a feature extraction algorithm, classifying the extracted features into brain states, computing brain abnormality indices reflecting the probability of correct classification of brain state, and graphically displaying the classification result and the abnormality indices on the handheld base unit.
摘要:
A method and apparatus for providing objective assessment of the brain state of a subject using a field portable device. The method includes placing an electrode set coupled to a handheld base unit on the subject's head, acquiring electrical brain signals from the subject through the electrode set, processing the acquired electrical brain signals using a feature extraction algorithm, classifying the extracted features into brain states, computing brain abnormality indices reflecting the probability of correct classification of brain state, and graphically displaying the classification result and the abnormality indices on the handheld base unit.
摘要:
A machine-learning based artificial intelligence device for finding an estimate of patent quality, such as patent lifetime or term is disclosed. Such a device may receive a first set of patent data and generate a list of binary classifiers. A candidate set of binary classifiers may be selected and using a heuristic search, for example an artificial neural network (ANN), a genetic algorithm, a final set of binary classifiers is found by maximizing iteratively a yield according to a cost function, such an area under a curve (AUC) of a receiver operating characteristic (ROC). The device may then receive patent information for a target patent and report an estimate of patent quality according to the final set of binary classifiers.
摘要:
A method and apparatus for de-noising weak bio-signals having a relatively low signal to noise ratio utilizes an iterative process of wavelet de-noising a data set comprised of a new set of frames of wavelet coefficients partially generated through a cyclic shift algorithm. The method preferably operates on a data set having 2N frames, and the iteration is performed N−1 times. The resultant wavelet coefficients are then linearly averaged and an inverse discrete wavelet transform is performed to arrive at the de-noised original signal. The method is preferably carried out in a digital processor.
摘要:
A method and apparatus for utilizing the benefits of encoded signal transmission and reception to enhance the performance of medical testing devices (100) adapted to evoke and measure biological response signals such as auditory evoked potentials (AEP), and the auditory brainstem response (ABR) signals in particular. Auditory stimuli, such as clicks, are presented to the ear of a human patient, in a predetermined encoded sequence, resulting in the generation of auditory responses and bio-electric response signals in the human patient. These response signals from the patient are acquired and observed, and are processed according to the predetermined encoded sequence in which the auditory stimuli were presented to the patient's ear in order to extract the desired auditory evoked potential signals or ABR signals.
摘要:
A medical screening device (100) configured to measure and monitor combinations of blood chemistry, breath gasses, and bioelectrical signals such as evoked auditory signals and EEG signals associated with human auditory testing to facilitate detection of abnormal medical conditions or disorders in human patients by providing a cumulative index representative of at least one detected medical disorder in the human patient.
摘要:
A method and apparatus for utilizing the benefits of encoded signal transmission and reception to enhance the performance of medical testing devices (100) adapted to evoke and measure biological response signals such as auditory evoked potentials (AEP), and the auditory brainstem response (ABR) signals in particular. Auditory stimuli, such as clicks, are presented to the ear of a human patient, in a predetermined encoded sequence, resulting in the generation of auditory responses and bio-electric response signals in the human patient. These response signals from the patient are acquired and observed, and are processed according to the predetermined encoded sequence in which the auditory stimuli were presented to the patient's ear in order to extract the desired auditory evoked potential signals or ABR signals.
摘要:
A method and apparatus for performing rapid brain assessment may provide emergency triage to head trauma patients by analyzing a combination of spontaneous and evoked brain potentials. The spontaneous and evoked potentials are analyzed, and the results classified, to present a real-time assessment of a patient's brain, diagnosing any potential abnormalities therein.
摘要:
Apparatus (10) for evoking and recording bio-potentials from a human subject and methods of use are described. The apparatus (10) includes a flexible member (18) with a layer of conductive material (12) disposed thereon for contacting a skin surface on the human subject. The dimensions and shape of the flexible member (18) are adapted for conforming contact between the conductive material (12) and the skin surface. A stimulus delivery element (28) is coupled to the flexible member (18) for delivering a sensory stimulus to the subject to evoke bio-potentials, which are detected and received through the layer of conductive material (12).
摘要:
A disposable electrode array 100, 200 including a flexible member 106, 206 in which a plurality of electrodes 102, 202 are disposed, having a shape adapted to contact the forehead skin surface on a human patient. A pair of ear loops 104, 204 coupled to the disposable electrode array 100, 200 secure the disposable electrode array 100, 200 about the patient's ears, with the flexible member 106, 206 disposed across the patient's bow, retaining the electrodes 102, 202 against the skin surface. Additional electrodes 102, 202 are disposed in proximity to the ear loops 104, 204 and are configured to contact the skin surface behind the patient's ears. An auditory stimulus delivery element 116, 216 is coupled with each of the ear loops 104, 204, and positioned to seat in proximity to the patient's ear canal for the delivery of auditory stimulus. Electrical conductors associated with the electrodes 102, 202 and the stimulus delivery elements 116, 216 are routed within the flexible member 106, 206 to a common external connection point 118, 218 for connection to an external system. The disposable electrode array 100, 200 may be configured for both evoking and measuring evoked bio-potentials in the human subject, or for measuring bio-potentials evoked using a separate stimulus delivery system.