Abstract:
An electronic imaging flow-microscope for remote environmental sensing, bioreactor process monitoring, and optical microscopic tomography applications is described. A fluid conduit has a port on each end of a thin flat transparent fluid transport region. A planar illumination surface contacts one flat side of the transparent fluid transport region and a planar image sensing surface contacts the other flat side. Light from the illumination surface travels through the transparent fluid transport region to the planar image sensing surface, producing a light field affected by the fluid and objects present. The planar image sensing surface creates electrical image signals responsive to the light field. The planar illumination surface can be light emitting elements such as LEDs, OLEDs, or OLET. whose illumination can be sequenced in an image formation process. The flow microscope can further comprise flow-restricting valves, pumps, energy harvesting arrangements, and power management.
Abstract:
Optical tomography arrangements are disclosed for performing optical tomography on the transparent or translucent contents of individual microplate wells comprising a light emitting array having a plurality of light emitting elements, a sample module, and a light sensing array including a plurality of light sensing elements, wherein the light sensing array is configured to sense light emitted from the light emitting array which has passed through the sample module. The light emitting elements can comprise light emitting diodes (LEDs), organic light emitting diodes (OLEDs), organic light emitting transistors (OLETs), and/or other optoelectronic devices. The light sensing array can comprise organic light sensing devices, photodiodes, phototransistors, CMOS photodetectors, or charge-coupled devices (CCDs). The light emitting array can be flat or curved, and the light sensing array can be flat or curved. The collection of measurement values can be overspecified, and a generalized inverse operation can provide solutions rendering computational tomography data.
Abstract:
An optical tomography system including a light emitting array having one or more light emitting diodes (LEDs), a sample holding module and a light sensing array comprising one or more light emitting diodes (LEDs), wherein the light sensing array is configured to sense light emitted from the light emitting array, which has passed through the sample holding module.
Abstract:
A cylindrical optical tomography system includes a light emitting array having a plurality of light emitting elements, a cylindrical sample holding element, and a light sensing array including a plurality of light sensing elements, wherein the light sensing array is configured to sense light emitted from the light emitting array which has passed through the sample holding module.
Abstract:
An electronic imaging flow-microscope for remote environmental sensing, bioreactor process monitoring, and optical microscopic tomography applications is described. A fluid conduit has a port on each end of a thin flat transparent fluid transport region. A planar illumination surface contacts one flat side of the transparent fluid transport region and a planar image sensing surface contacts the other flat side. Light from the illumination surface travels through the transparent fluid transport region to the planar image sensing surface, producing a light field affected by the fluid and objects present. The planar image sensing surface creates electrical image signals responsive to the light field. The planar illumination surface can be light emitting elements such as LEDs, OLEDs, or OLET whose illumination can be sequenced in an image formation process. The flow microscope can further comprise flow-restricting valves, pumps, energy harvesting arrangements, and power management.